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Abstract

This thesis resulted from a research effl)rt that explored the use of
knowledge-based system (KBS) architectures to manage infl)rmation on the primary

flight display (PFD) of commercial aircraft. The infl)rmation management strategy
that was _mplemented tailored the information on the PFD to the tasks the pilot
performed. This task-tailored approach to PFD information management required

co.rnplex logic that led to difficult-to-manage software in earlier implementations
using traditional programming techniques. Based on this problem, a KBS approach
was chosen over the traditional programming approach. This decision was based, in
part, on an earlier study that found KBS architectures easier to manage given
complex decision logic. This thesis describes the KBS design and implementation of
the task-tailored PFD information management application.

While working with the PFD information management system, an
improvement to the system's functionality was made. In the logic used for task-
tailored information management, knowledge of the phase of flight was necessary
for correct operation. Needing this input required that the pilot track and enter this
information (via cockpit switches) throughout the flight. This additional task for the
pilot was not desirable, so an effort to automate the detection of flight phase was
pursued. This thesis describes the knowledge acquisition and subsequent system
design of the flight-phase detection KBS.

Since the task-tailored PFD information effort became the first study
involving integrated KBS's running in LISP and executing in real time on a civil
transport aircraft, a preliminary study to evaluate the feasibility of the KBS concept

was performed. The objectives of this feasibility study were to test the resulting
KBS s, collectively called the Task-Tailored Flight Information Manager (TTFIM),
in flight, to verify their implementation, integration, and to validate the software
engineering advantages in an operational environment. This thesis will discuss these
flight tests and the subsequent results.

The results of the flight tests verified the feasibility of using KBS's for PFD
management with actual data. Correct implementation and integration of the KBS
with existing aircraft systems were evident by the correct mapping of KBS-dictated
PFD formats with those generated by the traditional implementation. Flight tests
were also successful in validating the logic used for flight-phase detection. The
flight-phase detection logic was successful for all elements within the flight-test

envelope except one. However, the cause of this one problem was easily isolated
during the flight test given the KBS environment.

The process of im.plementing the KBS's for flight tests validated the software
engineering advantages m an operational environment. Frequent modifications to
TI'FIM were necessary to achieve desirable performance. The KBS's built-in
utilities enabled quick and easy modifications. This observation and positive

pro.grammer feedback validated the ability of a KBS approach to ease software
maintenance. Another finding in favor of the software engineering advantages of

the KBS approach was the programmer's ability to more easily develop initial
systems (i.e., from scratch) using the KBS shell than with traditional programming

techniques. And, the ease with which the one logic error in the flight-phase
detection KBS was isolated during the flight tests was further evidence of the
software engineering advantages of KBS architectures.
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Introduction

The difficulties flight crews have experienced managing the
large amount of information available in today s transport aircraft cockpit, and the
trend to increase the amount of information in future cockpits, have made

information management a primary avionics concern. Many airline incidents and
accidents have been attributed to difficulties managing cockpit information. For
example, a United Airlines DC-8 crash in 1978 during approach to Portland,
Oregon, was attributed to an information management problem. The aircraft ran
out of fuel while the crew was troubleshooting a landing gear problem. If the flight
crew's attention had been focused on the fuel information at the right time, the

accident may have been avoided.

While good information management has always been a concern, a new
feature of the current generation of transport aircraft offers the potential for more
information management problems than before. This feature is the cathode-ray

tube (CRT) display. The almost unlimited flexibility of the CRT display lifted many
of the restrictions _mposed by the electro-mechanical instruments formerly used.
Now, much more information can be presented on a CRT at any given time, and

display formats can be altered to make room for even more pieces of information.
Th_s flexibility can lead to information management problems which yield factors

that cause display clutter.

Some research efforts have already been made to reduce the information
management problems of selected CRT display formats. For example, the Engine
Indication and Crew Alerting System (EICAS) of the Boeing 757 and 767 aircraft

reduced the information management problems on its target CRT by using a
centralized caution and warning system to manage the engine information
presented. With EICAS, only the parameters required to set and monitor engine

thrust were displayed full time, while the remaining engine parameters were
monitored and only presented when out of tolerance [Ford, 1982] [Ropelewski,

1982].

Another effort targeted at managing a specific CRT's information was the

NASA, Langley Research Center (LaRC) research effort focussed on the primary
flight display (PFD - see appendix A). Under this research effort, all information on
the PFD necessary for the basic control of the aircraft (i.e., pitch, roll, airspeed, and
altitude) was presented all of the times. Presentation of optional information (e.g.,
reference altitude, glideslope deviation, and vertical path.) was tailored according to
the task(s) the pilot performed, so that optional information was presented only
when needed by the pilot. For example, when one of the pilot's tasks was to follow a

_lideslope signal, the PFD was configured with Glideslope Deviation guidance,
instead of Vertical Path or Reference Altitude gu idance.

This task-tailored approach to PFD information management required

complex logic to automate. Originally, this logic was implemented using procedural

programmin_ techniques. However, this original implementation led to several
software engineering disadvantages. The original procedural code was hard to
trace, modify, and verify, and with each change to the logic, these problems were
enhanced. Because of these problems, a knowledge-based system (KBS) approach

was explored as an alternative to the traditional programmin_ approach. The
decision to use a KBS approach was based in part, on an earher study that found
KBS architectures easier to manage given complex decision logic [Ricks & Abbott,



1987]. This thesisdescribesthe KBS designand implementation of the task-tailored
PFD information managementapplication.

Another aspectof this thesisdealt with an improvement to the information
managementsystem'sfunctionality. For correct operation of the information
managementlogic, knowledgeof thephaseof flight wasneeded. This required that
the pilot (or test engineer) track and maintain this input through bezelswitches(i.e.,
toggle switches)in the cockpit. This additional task for the pilot wasnot desirable,
so aneffort to automate the detection of flight phasewaspursued. This thesiswill
discussthe approachtaken to automatethe flight-phasedetection, and describethe
resulting KBS.

Sincethis PFD information mana[gementeffort resulted in the first study
involving KBS's running in LISP in real time on a civil transport aircraft (i.e., the
Transport SystemsResearchVehicle - seeappendixB) a preliminary studyto
evaluatethe KBS conceptwasnecessary.The objectivesof this studywere to
design,implement, and test (in flight) the KBS approachto PFD information
management,to determine the feasibility of addressingthis problem with a KBS
approach,to validate the flight-phasedetection logic, and to confirm the software
engineeringadvantagesof the KBS approachwhile in an operational environment.

This paper is divided into four sections.The first sectiondescribesthe PFD
information managementproblem and resultingsystemdesign. The secondsection
discussesthe knowledgeacquisitionand constructionof the flight-phasedetection
KBS. The third sectiondescribesthe evaluation of the KBS concept(including the
evaluation of the flight-phasedetection KBS). And, the final sectionsummarizes
the resultsof this evaluation and listsrecommendationsfor further research.

Chapter 1 T_ask-Tailored PFD
nl'ormation Management

1.1 Domain

In orevious PFD research efforts, goals were not directed at managing the
flow of intormation. In past efforts, each piece of information was simply given a
location on the screen and presented whenever available. However, the increased
amount of information targeted for the PFD made it difficult to present information

based solely on availability. Continuing to dedicate space on the PFD for each
piece of information would have contributed to factors that cause display clutter
(e.g., display density). Display clutter increases the user's search time and inhibits
the ability of the user to understand pertinent display information.

Therefore, an effort targeted at managing information on the PFD was
initiated at NASA LaRC. Under this effort, the PFD information management
philosophy presented all information necessary for the fundamental control of the
aircraft (i.e., pitch, roll, airspeed, and altitude) at all times. It then tailored the
optional information on the PFD according to the task(s) the pilot performed, so

that optional information was presented only when needed by the pilot. For
example, when one of the pilot's tasks was to follow a glideslope signal, the PFD was
configured with Glideslope Deviation guidance, instead of Vertical Path or Reference
Altitude guidance.



Providing only relevant information on the PFD was a logical approach to

explore, since the more information the greater the competition among screen
components for a person's attention. Visual search times would have been longer,
and meaningful patterns more difficult to perceive if the screen flooded the user
with too much information [Galitz, 1989]. The overall cleanliness of the display

heightens the operator's ability to successfully perform his search and identify
information. Because when an operator scans a display for a specific parameter

(target), all other information on the screen is noise [Gilmore, 1985].

Since it was decided that only relevant information be presented, relevant
PFD information was defined as information necessary and helpful for the

fundamental guidance and control of the aircraft at any point in time. In
determining the relevance of PFD information, the information was categorized as
either basic or optional. Basic PFD information (e.g., altitude, airspeed, pitch, etc..)
was defined as the information necessary for the fundamental guidance and control

of the aircraft, and by definition, basic PFD information was always relevant.
Optional PFD information (e.g., reference altitude, vertical path, etc...) was

identified as the information that was helpful in performing certain guidance and
control tasks, such as maintaining a specified altitude, or following a vertical path.
However, optional information was not required for the fundamental guidance and
control of the aircraft, nor was it always relevant to the pilot's current tasks. Since

basic information was always relevant and therefore always d!splayed, optional PFD
information was the target of the task-tailored PFD information management effort.

Following is a list of the optional information symbols managed by T-FFIM.
The optional information controlled by this system was Localizer Deviation,
Horizontal Deviation, Track-Angle Error (1, 2, and 3), Vertical Path, Reference
Altitude, Glideslope Deviation, Radar Altitude, Runway Image, Waypoint Star,
Flare Guide, and Commanded Airspeed (1 and 2). Appendix C g_ves a detailed
description of each piece of information.

The logic necessary to carry out this task-tailored approach to information
management required input data from many sources. The information necessary to
decide what optional PFD information to present consisted of the airplane's
automatic control mode configurations, the cockpit switch settings, sensor and
system information (e.g., signal availability and numerical sensor values), and the
current flight phase. Descriptions of the input data can be found in appendix D.

As mentioned above, the tasks the pilot performed were used to determine
what information was relevant and subsequently, what optional information to

present. This mapping of tasks to relevant optional information was done implicitly.
In other words, the tasks were not sought explicitly at run-time and then all

information necessary for the tasks identified. Instead, the conditions that were true
when a task was being executed were used for the conditions of the subsequent

optional information rule. For example, if the airplane was in the landing phase of
flight, with a valid glideslope signal, and the automatic land mode had been engaged
on-the control-mode panel (CMP), then the task of following a glideslope was being
executed. Therefore, the guidance symbol on the altitude scale should represent the

glideslope signal (i.e., Glideslope Deviation Symbol).

The rules used for the task-tailored management of optional information

displays are described in detail in appendix E.



1.2 Problem

This task-tailored approach to PFD information management required
complex logic to automate. Early attempts at implementing the complex logic with
traditional programming techniques led to difficult to manage programs which
proved costly in time and clarity. With the traditional implementation, logic
pertinent to managing the display elements was hard to distinguish from other code.
As a result, it also became increasingly harder to understand and modify the logic
used to control the optional information presentation as the implementation
progressed.

The software engineering problems were critical with the PFD management
application since the venicle for this system was a research environment and the
frequency of logic changes was high. Since changes were frequently occurring to the
logic, the costs of time and clarity mentioned above were amplified. Therefore, a
new implementation approach was sought.

1.3 Approach

Because of the software engineering problems with the traditional
implementation, a KBS approach was explored. The decision to use a KBS
approach was based, in part, on an earlier study that found KBS architectures easier
to manage given applications with complex logic [Ricks & Abbott, 1987]. In this
earlier study the traditional implementation was more efficient in execution time,
however, the KBS provided the potential for improving the productivity of the
programmer and designer. In the study, modifications to the KBS implementation
were found to be easier, more efficient, and less error-prone than with the
traditional implementation. The homogeneous representation of the rule-base was

found to be instrumental in code simplification and test-tool development needed
during the verification process. The overall simplicity and modularity of the KBS
were found to be more amenable to utilities that aided in the explanation of the
system's execution.

Another factor contributing to the exploration of a KBS approach for this
application was the successful use of KBS architectures for rapid prototyping. It has
been found that rapid prototyping environments generated systems that simulated
the important interfaces, and performed the main functions of the intended system
[Rushby, 1988]. These features of rapid prototyping allowed early experience with,
and direct testing of, the main aspects of the system's proposed functionality,
thereby allowing much earlier and more realistic appraisals of the system's
requirements specifications. Therefore, rapid prototyping environments fit neatly
into the standard life-cycle model of software engineering. Rapid prototyping
helped avoid the problem of making errors early and not detecting them until late in
the life-cycle (a particularly costly and serious problem). Without rapid prototyping,
missing or inappropriate requirements were hard to detect at an early stage.

Systematic reviews (commonly used in non-rapid prototyping development) often
detected inconsistent, or ambiguous requirements, but missing requirements
generated no internal inconsistencies and often escaped detection until the system
was actually built and tried in practice.

Another experimental comparison of a prototyping versus a traditional
approach to software development [Boehm et al. 1984] found that both approaches
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yielded approximately equivalent products, though the prototyping approach
required much less effort (45% less) and generated less code. Since the products of
rapid prototyping were developed incrementally, they were also considered easier to
learn and use.

Based on the findings of these earlier studies, this application was
implemented using a KBS approach in an attempt to reduce the software
engineering problems found with the traditional implementation. The next section
describes the system design. The system described made use of one KBS to
implement the same system (functionality) previously implemented using traditional
techniques.

1.4 System Design

The KBS implementation of the optional PFD information management
effort was named the Task-Tailored Flight Information Manager (TI'FIM),

describing the functionality of the system. The overall system design is illustrated in
Figure 1-1, and again with a data flow diagram in Figure 1-2.
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Figure 1-2 shows that the final control and guidance information was provided

to the pilot via the PFD. The PFDformats (including the dynamic information)
were configured within the Displays computer (see appendix B). Configuration of
the PFD was based on two sets of data. One set of data contained all the sensor and

system information residing on the various aircraft computers. And, the second set
of data identified the optional information to present. The optional information to
present was generated by the task-tailored approach described above. The selection

of optional information KBS based its decision on the status of the display switches,
the control mode configuration, the indicated flight phase, and various sensor/system
information. The pilot requests generated the configuration commands needed to

determine the status of the display switches, control mode configuration, and phase
of flight. The airplane sensors provided the data to the onboard computers.

Implementation and integration issues of the TI'FIM flight software are
discussed in appendix F.

Chapter 2 Automatic Flight-Phase
etection

2.1 Problem

Another aspect of this thesis dealt with an improvement to the task-tailored
PFD information management system's functionality. As illustrated in Figures 1-1

and 1-2, correct operation of TTFIM required indication of the current phase of
flight as input. For the earlier implementations, this required that the pilot (or test

engineer) track and maintain this input through bezel switches (i.e., toggle switches)
in the cockpit. Additional tasks (like indicating flight phase) for the pilot were not
desirable, so an effort to automate the detection of flight phase was pursued.

2.2 Approach

Through pilot interviews and piloted simulations in the Transport Systems
Research Vehicle (TSRV) simulator [NASA SP-435, 1980] [Grove et al. 1986], a set
of rules was derived for automatic flight-phase detection while in flight. The pilot
interviews were conducted first to obtain a preliminary set of rules. These rules

were then implemented in the TSRV simulator for further knowledge acquisition.

The initial pilot interviews were used to determine the number of different
flight phases needed and to get a working set of rules which characterized these

phases. As a starting point for these interviews, the current set of flight phases used
by the pilots for manual entry into TI'FIM was used: taxi, takeoff, climb, cruise,
descend, and land. For better resolution, and for possible use of the automatic
detection logic for other applications, four new phases were substituted for two of
the former ones. The phases of terminal climb and enroute climb were substituted
for climb. Similarly, enroute descend and terminal descend were substituted for
descend.

The rules focussed on the fact that only certain phases can physically
transition from one to another. For example, when the aircraft is taking off, the
only possible phase transitions from takeoff were to either terminal climb, land, or
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taxi. With thesephysicallimits on the possibletransitions, the rules for each phase
transition only needed to be able to distinguish itself from its transition neighbors,
thus minimizing the number of conditions required for each transition.

To minimize the possibility of ambiguity in the flight-phase detection logic,
the rules were defined as "transition-in" rules. This meant that the conditions

required for a flight phase to be active only needed to be true to start that phase, not
to stay in that phase. Once in a specified phase of flight, the only way the system

would transition into another phase of flight was if the conditions for another phase
became true (not if the conditions of the current were no longer true). For example,
one of the conditions in the rule for takeoff stated that the flight phase in the
previous cycle was either taxi or land (i.e., Last-Phase = TX or LD). One cycle

after the phase of flight became takeoff, the "Last-Phase" variable was bound to
takeoff (i.e., T/O), thus no longer satisfying the condition stating that the last phase
must be either taxi or land. However, the phase of flight remained takeoff until the
conditions of another phase became true.

The vehicle used for further knowledge acquisition was the TSRV simulator.
The TSRV simulator was a fixed-based cockpit configured as the research cockpit of
the TSRV airplane (see appendix B). The simulation included a six-degree-of-
freedom set of nonlinear equations of motion, and functionally represented the
aspects of the advanced flight control configuration of the airplane. The research
cockpit is characterized by eight, 9-inch diagonal, color display units.

For this study, the TSRV simulator was also connected to the Visual Landing

Display System (VLDS). The VLDS was a camera/model-board system for
generating a visual out-the-window scene for the pilot of a simulated aircraft. The
system consisted of a dual-scaled terrain model, a series of lamps to illuminate the

model, a three-degree-of-freedom translation system to position the camera, and a
three-degree-of-freedom optical/rotational system mated to a color television
camera. The VLDS provided non-composite RGB television signals to an external
simulator cockpit window display device to give a field of view of 48 degrees
horizontally, by 36 degrees vertically [Grove et al. 1986]. The VLDS provided the
"out-the-window" scenes necessary for the taxi, takeoff, terminal descend, and land
phases of this study.

The flight-phase detection logic was coded in a module that ran in the
background of the TSRV simulation. No functionality of the simulation (e.g.,

display configurations)was affected by the introduction of this logic with the
exception of a coded number on one of the cockpit displays to show the
experimenter what phase of flight the logic detected.

For the evaluation and further knowledge acquisition of the flight-phase
detection rules, seven pilot subjects were used. Three of the subjects were NASA
test pilots, one subject was a pilot for the United States Navy, one subject was a
Army Reserve pilot, and the remaining two were NASA employees - one with an
Airline Transport rating, and the other with commercial and instrument ratings.

Each subject was briefed prior to the simulation stud), with respect to the display
formats, the aircraft cockpit systems, and the evaluation task.

The simulator evaluation began after the pilot briefing. Many of the
evaluation sequences were as follows:



. Simulator familiarization and practice flights - Because no demands
were placed on the subjects that were specific to the simulated
aircraft, and pilot performance was not a measure of concern in this
study, the simulator familiarization and practice flights used the same
scenario programmed for the evaluation (i.e., same flight plan).

. Full mission]light (i.e., from taxi at Norfolk International to taxi at
Richmond International) with discrete inputs from the subjects being
recorded - The subjects were briefed regarding the flight phases
identified in this study and were asked to indicate when they thought
they were making a transition from one phase to another by keying
the trigger on the side-stick controller. The input from the pilots were

compared against the transition times generated by the automatic
flight-phase detection logic.

. Full mission flight with the simulation being frozen at each phase
transition for subjective evaluation - At each flight-phase transition the

simulation was frozen and the subject was given the opportunity to
evaluate the current phase transition qualitatively.

o Flights consisting of aborted takeoffs, touch-and-go's, and other
deviations from the flight plan - These deviations were not pre-

ogrammed and left up to the pilot as to how they were carried out.
ost of these flights were frozen at each phase transition for further

subjective evaluation.

Because the pilots' performance was not a measure, and no statistical

significance was sought, deviations from the above sequence were allowed. The
results sought in each subject evaluation were to either validate the set of rules
being used or to identify changes that needed to be made. Valid changes to the
logic were made between each subject evaluation. Errors in the logic often surfaced
with one pilot and not another due to differences in their flying styles and training
biases. The final set of rules used in simulation were representative of each of the
evaluations.

The overall result of this evaluation process were the set of rules taken to the
TSRV aircraft for flight tests. These rules are discussed in appendix G.

2.3 System Design

The resulting system design with the addition of the new KBS for flight-phase
detection is illustrated in Figure 2-1, and again with the data flow diagram in Figure
2-2. The overall system design is the same as illustrated in Figure 1-2, and described

in section 1.4 with the exception of the new KBS that detected the ph_.e offlight.
With this change, the pilot requests and subsequent bezel switch settmgs are not
needed to supply the phase of flight input to the information selection KBS.
Instead, the phase of flight is determined using the sensor/system information and
the logic described above.

Implementation and integration issues of the "I_FIM flight software are
discussed in appendix F.
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Chapter 3 Evaluation

The task-tailored PFD information management effort was the first study

involving KBS's running in LISP, and executin_ in real-time on the TSRV airplane.
With the advent of such a drastic implementation change, feasibility issues were a

concern. Therefore, a study to evaluate the feasibility of approaching the PFD

information management problem with a KBS approach was p.erformed. The
implementation and integration of the software tor the feasibility study were also
used to validate the software engineering advantages of the KBS approach in an
operational environment.

TI'FIM was evaluated onboard the TSRV aircraft in two stages. The

objective of the first stage of flight tests was directed only at testing the KBS that
selected the display elements to present, to assess the feasibility of the KBS

approach. For the first stage of flight tests, no functional changes from the
traditional baseline implementation were desired. For these initial flights, the flight
engineer manually entered the flight-phases as they occurred (see Figure 1-2, page
11). See appendix H for a description of the flight-test envelopes used for the stage
1 evaluation.

For the second stage of flight tests, the objectives were to validate the flight-

phase detection logic, and to evaluate the addition and integration of the new KBS

(see Fibre 2-2, page 18). These tests were done with a flight-test envelope
consisting of multiple repetitions of each flight phase represented in the KBS, and
multiple transitions between the flight phases. See appendix I for descriptions of the
flight-test envelope used for the stage 2 evaluation.

STAGE 1 Evaluation - Optional Information Selection KBS

The intent of the first stage evaluation was to assess the feasibility of
implementing the PFD information management application using a KBS for real-
time operation onboard the TSRV airplane. For this evaluation, the KBS
implementation was intended to duplicate the functionality of the traditional
implementation. There were no characteristics of TTFIM in this stage that changed
the functionality of the PFD information management from what the traditional
implementation did on the airplane. Therefore, a successful evaluation of the stage
1 tests was defined as a KBS implementation and integration that duplicated the

performance of the traditional system.

As mentioned earlier, flight tests were used to verify the implementation and
integration of TTFIM onboard the TSRV. The traditional code implementation
was used in the flight tests as a basis for comparison. Both pilot feedback and
comparisons between KBS display elements and expected display elements were
used in the post-flight analysis.

The test pilot for this study had flown many hours in the TSRV research
cockpit, and was familiar with the behavior of the PFD when driven by the
traditional implementation. Therefore, pilot feedback was used to note deviations
on the PFD from what was expected. Pilot comments during the flight tests were
manually recorded for post-flight analysis. While major irregularities did not occur,
the pilot did notice that the first appearance of some of the optional information

was slower with the KBS approach.
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Throughout the flight tests,short delays(of afew secondsor less) were noted
with the first appearance of a few optional information display elements. The
increase in time needed to initiate some of the optional information formats was
attributed to the slower nature of the LISP language and hardware, and the simple
addition of a new module in the TSRV data communications (remember that the

traditional implementation was embedded in the Displays computer graphics calls).
Now extra steps were required to retrieve the input information, process the
information, and then send the information to the Displays computer for formatting.

Delays were also noted in the comparison data that were recorded.

Comparison data were recorded throughout the flight in the form of discrete display
control words (see Table 3-1 below). Two discrete words were sufficient to
represent each of the optional information elements driven by TI'FIM (words 0 and

1). When a bit in a control word was set (i.e., equal to one), the relative display
element was active. For example, when the second and fourth bits in control word
zero were set and the remaining bits were zero, then Horizontal Deviation and

Glideslope Deviation were the only active elements of word one.

TABLE 3-1

Output Display Control Words

Display Control Word Bit Indication

0 0 Reference Altitude

1 Waypoint Star
2 Horizontal Deviation

3 Glidesiope Deviation
4 Localizer Deviation

5 CAS Reference (dial)
6 CAS Reference (buffer)

0 Runway Image
1 Radar Altitude
2 Vertical Path
3 Flare-Guide

4 Track-Angle Error 1
5 Track-Angle Error 2
6 Track-Angle Error 3

The comparison data for the stage 1 tests consisted of the display elements
active under both the traditional and KBS implementation - each implementation
generated its own display control words. Even though the optional information on

the PFD was being driven by the KBS, both the traditional and KBS implementation
were generating d_splay control words for post flight analysis. As with the pilot
feedback, the only deviations noted in the post flight analysis were the small delays
the KBS experienced when updating some of the active display elements.

Even though some update delays occurred with the KBS implementation,
flight operations were not interrupted. Feedback from the pilot was positive, and
the KBS display elements were equivalent to the expected display elements. These
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resultsconfirmed "ITFIM's implementation and integration, and thus validated the
feasibility of the KBS concept for implementation of PFD information management.

STAGE 2 Evaluation - Flight-Phase Detection KBS

The second stage of tests were directed at validating, the flight-phase
detection logic, and verify the implementation and integratnon of the KBS onboard
the TSRV. The implementation and integration of the new KBS with the other
KBS and TSRV systems were evaluated using the same measures as the previous
study - the PFD performance (assessed again by pilot evaluation and comparison
data). Since the automatic flight-phase detection KBS was not designed to change
the PFD performance, but rather to eliminate the need for the pilot to enter it

manually, the performance of the PFD would be the same as the traditional
implementation if the flight-phase detection KBS was implemented and integrated
correctly.

Validating the flight-phase detection logic was done by comparing the phases

detected with those expected. Two additional control words were added to help
evaluate the detection of flight phase KBS. These control words are defined in
Table 3-2 below.

TABLE 3-2

TITIM Output Control Words

Display Control Word Bit Indication

2 0 Takeoff
1 Terminal Climb

2 Cruise
3 Terminal Descent
4 Land
5 Taxi
6 Enroute Climb
7 Enroute Descend

3 0 Error Flag (for flight phase)

Only one phase was true at one time, therefore only one bit in word 2 was set
at one time. The error bit (word 3) was set when errors were reported by the KBS.
The control word indicating the phase of flight was decoded and displayed on the
screen during the flight. This presentation of flight-phase was used by the test
engineer to note whether the logic was detecting current phases as it should. Video
recordings of the PFD were also used in post flight analysis.

Correct PFD configurations verified the implementation and integration of
the flight-phase detection KBS. The evaluation of the flight-phase detection logic
was successful for all elements within the flight-test envelope (see appendix I)
except one. At one point in the flight-test envelope, the test called for a "touch-and-
go" where the KBS was to detect the transition from land to takeoff. However, a
transition to taxi occurred due to an erroneous value given for the flap settings in
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the rules. This problem waseasily isolatedgiven the KBS environment. With the
correction to the flight-phasedetection KBS being made,the testswere corLsidered
successful.

Software Engineering Evaluation

The implementation and integration of the flight test KBS's were also used to
validate the software engineering advantages of KBSrs identified in a orevious study

[Ricks & Abbott, 1987] while in an operatlonal environment. In the development
and maintenance process, frequent modifications to TrFIM's rules were needed to

achieve correct performance. The KBS programming environment's built-in utilities
enabled quick, easy, and efficient modifications.

The KBS environment also provided routines for explaining the execution,
and producing information needed to verify performance. These features helped
0uring the initial development and in explaining system performance during the
flight tests. Positive programmer feedback and the additional data point of isolating
the logic error in the flight-phase detection KBS during the flight tests was further
evidence of the software engineering advantages of KBS architectures.

Chapter 4 Concluding Remarks

This thesis resulted from a study at NASA LaRC that is explorin_ effective
ways of managin_ information on the PFD of commercial aircraft cockpits. The
current information management strategy being explored determines when to

present information on the PFD by the tasks the pilot performs. This task-tailored
approach to PFD information management reqmres complex logic that led to

sottware engineering problems when traditional procedural programming
techniques were used. Based on these software engineering problems, aKBS

approach was chosen over the traditional programming approach. This decision was
based, in part, on earlier studies that found KBS architectures easier to manage
given complex logic•

While working with the PFD information management system, an
i , • . .mprovement to the system s functlonahty was made. In the logic used for task-

tailored information management, knowing the phase offli(ght was necessary for
correct operation. In the original procedural implementation, the need for this
input required that the pilot enter the phase of flight (via cockpit switches)
throughout the flight. Adding this task for the pilot was not desirable, so the
detection of flight phase was automated within this effort.

Since the task-tailored PFD information effort was the first study to involve
KBS's running in LISP in real time on the TSRV aircraft, feasibility issues surfaced.
Therefore, a preliminary study to evaluate the feasibility of the KBS concept for this

flight application was performed. The objectives of the stud), were to test the
resulting KBS's in flight, to verify their implementation and integration, and to
validate the software engineering advantages in an operational environment.

The results of the flight tests verified the feasibility of using KBS's for PFD
management with actual data. Correct implementation and integration of the KBS
with existing aircraft systems were evident by the correct mapping of KBS-dictated
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PFD formats with thosegeneratedby the traditional implementation. The only
irregularity noted during the flight testsby both pilot feedbackand recorded
comparisondatawere the small delaysthat the KBS causedwhen changingsomeof
the PFD information formats (e.g.,from referencealtitude guidanceto glideslope
guidance). However, thesedelayswerevery slight, and did not interrupt flight
operations.

Flight testswere alsosuccessfulin validating the logic usedfor flight-phase
detection. Validation of the flight-phasedetection logicwasdoneby tracking the
phasesdetectedwith thoseexpected. The evaluation of the flight-phase detection
logic wassuccessfulfor all elementswithin the flight-test envelopeexceptone.
However, the causeof this one problemwaseasily isolatedduring the flight test
given the KBS environment. Correct mapping of PFD formats during the validation
of the flight-phasedetection logic alsoverified the integration of the flight-phase
detection KBS with the KBS systemfor selectionof PFD formats.

The processof implementing the KBS's for flight tests provided the
information necessary to confirm the software engineering advantages of KBS
architectures in an operational environment. Frequent modifications to q-TFIM
were necessary to achieve desirable performance. The KBS's built-in utilities
enabled these modifications to be done quickly and easily. This observation and
positive programmer feedback validated the ability of a KBS approach to ease the
task of software maintenance. Another finding in favor of the software engineering

advantages of the KBS approach was the programmer's ability to more easily
develop initial systems (i.e., from scratch) using the KBS shell than with traditional

programmin/_ techniques. The ease with which the one logic error in the flight-
phase detection KBS was isolated during the flight tests was even further evidence
of the software engineering advantages of KBS architectures.

An auxiliary contribution of this thesis resulted from the process of preparing
the KBS software for flight tests onboard the TSRV airplane. The experience

gained during this process will ease the effort required to take future systems
requiring Al-based implementation techniques to the TSRV. Another contribution

was that the flight-phase detection logic used in this study can be use by other
studies requiring fhght-phase input. And, the KBS architecture developed for this
task will also ease the future exploration of PFD information management efforts by
providing an software platform more amenable to logic modifications. For future
work, pilot evaluations of the task-tailored PFD information management

philosophy are planned. Additionally, plans are being made to perform a sensitivity
analysis and an ambiguity evaluation otthe flight-phase detection logic.
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Appendix A
Primary Flight Display (PFD)

The PFD (see Figure A-l) provides a pilot with information necessary for
guidance and control of an aircraft. Studies have shown great potential in reducing
pilots visual work load with electronically generated PFD's (e.g., [Steinmetz, 1986],
[Abbott et al. 1987a] and [Abbott et al. 1987b]). The installation of electronically
generated PFD's in some of the Boeing, McDonnell Douglas, Airbus, and other
aircraft families characterize an increasing trend toward using these PFD's.

The PFD format in the TSRV shows the current aircraft attitude and

provides other critical state information to the pilot. Refer to the PFD format

drawintg, Figure A-2. The area in the center of the screen is referred to as the PFD
view window. Within the window a number of symbols appear that depict aircraft
roll, pitch, yaw, flight path angle, angle of attack, and track error. Three

dimensional representations of the waypoint and the destination runway are
displayed in the window along with a flare guidance cue and alert messages.

Angular perspective in the window is provided by the pitch grid and horizon
ticks. The pitch grid has a double solid line representing the horizon which

separates the sky from the _ground, along with parallel grid bars spaced in 5 degree
increments. Along the horizon line, tick marks are spaced to show 10 degree steps
of horizontal displacement. The other window symbology is interpreted against the
grid and ticks to ascertain proper angular readings. The area from the horizon line
to the top of the view window is raster filled in blue to easily distinguish the
sky/ground boundary formed by the horizon line. At the top of the window along
the arc is a roll scale which uses a triangular pointer to designate current aircraft roll
angle. The roll angle corresponds to the amount of rotation applied to the horizon
line within the view window.

On either side of the view window are gray raster filled rectangular areas
called the airspeed and altitude tapes. They have tick marks and numeric values

which can slide vertically giving the appearance of rolling measurement tapes.

The airspeed tape, on the left side of the view window, has the current

aircraft airspeed value in the blacked out area at the center of the tape. A yellow
pointer box containing a reference airspeed value may also appear at the

appropriate spot on the tape when certain conditions arise. When airspeed is
changing an elongated arrow will grow from the tape center vertically along the
outside of the tape ticks and point to the airspeed that will be reached in ten

seconds at the current rate of acceleration. Also along the same edge of the
airspeed tape are a pair of wedge markers that bound a range of airspeeds suggested
for the current aircraft flap settings and gross weight.

On the right hand side of the view window is the altitude tape. Similar to the
airspeed tape, the current airplane altitude is shown in the blacked out area at the

tape center. A yellow pointer box can also be displayed on the altitude tape

representin._ selected altitude, glideslope deviation, or vertical deviation depending
on the condntions. Flight path angle error is determined from the length of the
white arrow that grows from the center of the altitude tape. When the glideslope

error symbol is being displayed on the altitude tape, three magenta dots appear
along the left edge of the tape to be used as a glideslope deviation scale. The last
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item connected with the altitude tape is the radar altitude symbol. This red and
white wedge shaped symbol is placed on the tape at the point that corresponds to
the height of the ground above sea level.

On the top of the display area above the tapes is the phase of flight indicator
on the left, and the baroset value and wheel/column detent pointers on the right.
Below the altitude tape is a rectangular box containing the decision height value.
Directly under the view window is the horizontal deviation scale and the flight
information and status boxes. The horizontal scale has two reference markers. The

white arrow that expands along the bottom of the scale shows track angle error
while the pointer box on the top is used for horizontal deviation, localizer deviation,
or crosstrack.

Along either side of the display screen are small squares adjacent to the
sixteen bezel buttons. The squares indicate the current state of the bezel buttons,
small green squares indicate "ON" and smaller magenta ones for "OFF". Normally
(however experiments may redefine) the top six bezel buttons on the left hand side
are used to choose thephase of flight mode for the PFD format. The bottom two
bezels are the "cas" and"message" buttons which enable the display of the
commanded airspeed and alert messages respectively. The eight buttons on the
right hand area are also used to enable certain symbols. The first six enable the
following pointers; reference altitude, vertical deviation, _lideslope, horizontal
deviation, crosstrack, and localizer. The last two are used to select the perspective
runway symbols and waypoint star.
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Figure A-1 - The Primary Flight Display
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Figure A-2 - PFD With Optional Information Formats
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Appendix B
Transport Systems Research Vehicle
(TSRV)

The TSRV [NASA NR87-48, 1987] is a specially instrumented Boeing 737 (a
twin-engine subsonic commercial jet transport), with two flight decks (see Figures B-
1 and B-2). The forward flight deck is a conventional Boeing 737 flight deck used
for operational support and safety backup. The aft flight deck is a fully operational
research flight deck positioned in the aircraft's cabin.

The experimental systems consist of triplex digital flight control system, a
digital navigation and guidance system, and an electronic CRT display system
located in the aft (research) flight deck [Knox & Cannon, 1980]. The full-scale
research flight deck is located m the airplane cabin just forward of the wing as
shown in Figure B-2. Figure B-3 shows the instrument panel of the research flight
deck.

The triply redundant digital flight control system is driven by the controls
computer. It provides both automatic and fly-by-wire control wheel steering
options. One advance control mode, velocity vector control wheel (stick) steering
mode, has the flight control computers (see Figure B-2) vary pitch attitude and
heading to maintain flight-path angle and track angle, respectively [Knox & Cannon,
1980].

The navigation computer (see Figure B-2) is a general-purpose digital
computer designed for airborne computations and data processing tasks. Major
software routines in the navigation computer include navigation position estimate,
flight route definition, guidance commands to the flight control computer system,
and flight data storage for navigation purposes.
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Appendix C
Optional PFD Information

This appendix lists the optional information managed by TI'FIM along with
description of each piece of information. The optional information controlled by
this effort were Localizer Deviation, Horizontal Deviation, Track Error 1-3,

Vertical Path, Reference Altitude, Glideslope Deviation, Radar Altitude, Runway
Image, Waypoint Star, Flare Guide, and Commanded Airspeed 1-2.

a

Localizer Deviation, located at the bottom of the PFD, is used for horizontal

aeidance where a localizer signal is used for the horizontal track. The Localizer
viation symbol indicates horizontal deviation from the localizer beam in degrees.

Horizontal Deviation, located at the bottom of the PFD, was horizontal
guidance where the reference path was either commanded by thepilot (via the
CMP) or from the navigation computer (pre-programmed). The Horizontal
Deviation pointer indicated horizontal flight path deviation in feet.

Track Error located at the bottom of the PFD, was horizontal guidance using
an arrow to indicate the difference between actual track and either the dialed in

track, the track in the navigation computer, or the runway. Track Error 1 used the

runway heading as the path reference. Track Error 2 used the track commanded by
the pilot (via the CMP). And, Track Error 3 used the path in navigation computer.

Vertical Path symbology was located on the right hand side of the view
window on the altitude tape. Vertical Path was for vertical guidance where the
reference path was either commanded by the pilot (via the CMP) or in the
navigation computer.

Reference Altitude symbology was located on the altitude tape. Reference
Altitude was vertical guidance where the reference was either commanded by the
pilot (via the CMP) or in the navigation computer.

Glideslope Deviation symbology was located on the altitude tape. Glideslope
Deviation guidance was like Vertical Path guidance with the exception of the path
being defined by a glideslope signal.

Radar Altitude was another item connected with the altitude tape. This
symbol was placed on the tape at the point that corresponded to the height of the
ground. If desired by the pilot, Radar Altitude can be displayed whenever valid.
Radar Altitude is sometimes called Runway Altitude since it shows the placement of
the runway above sea level.

Runway Image was displayed as a three dimensional image in the middle of
PFD view window. Runway Image was used as secondary vertical and horizontal

guidance. The runway symbol has a horizontal line across it to indicate the
touchdown point on the runway. Like Radar Altitude, Runway Image can be
displayed whenever valid and desired by the pilot.

Waypoint Star was displayed as an image in the middle of the PFD view
window. Waypoint Star was a three dimensional visual reference of the destination
waypoints within the PFD view window as defined in the navigation computer.
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Waypoint Star guidancewasusedfor both vertical and horizontal guidance.
Waypoint Star guidancewasdisplayedwhenevervalid and desiredby the pilot.

Flare Guide symbol was displayed in the middle of the PFD view window
when the appropriate conditions occur during the landing phase. The flare guidance
cue rose from the bottom of the screen toward the bore sight of the gamma wedge

symbol. Once the cue reached the bore sight, the pilot began the flare maneuver
and in doing so, kept the cue and sight joined as a single unit. To clean up the
screen when the flare guide symbol was used, no horizontal or track angle error
guidance was displayed.

Commanded Airspeed was located on the left hand side of the view window

on the airspeed tape. Commanded Airspeed provided a reference for (as the name
implies) airspeed. Commanded Airspeed 1 used as a reference, the input from the

ilOt (i.e., the CMP). Commanded Airspeed 2 used as a reference, the speeds given

r waypoints in the navigation computer. The only competition with Commanded
Airspeed guidance is between the source of the reference. Either the pilots
reference will be used, or that in the navigation computer.

27



Appendix D
Input for Information Selection KBS

This appendix lists the input information used by TFFIM to select the
optional information to present on the PFD, along with a brief description. The
input information consisted of control mode configurations, cockpit switches, sensor
and system information, and the current flight phase. At the end of this appendix is
a brief listing of the information used to determine the phase of flight.

Control mode configurations were any of the many combinations available

on the control mode panel (see Fi_. re D-1 and [NASA SP-435, 1978]). The lower
left-hand section of the CMP prowded selection of attitude control-stick steering,

velocity vector control-stick steering, or automatic flight path control. The lower
center and right-hand sections provided selection of the type of automatic path

guidance. The four top sections provided hold select, and preselect operatl_on of
automatic airspeed, altitude, flight-path-angle, and track-angle modes. Most
buttons on the CMP were 4-level buttons indicating either off, preselect, arm, or

en_aged status. The dials on the CMP were used to input reference airspeeds,
altitudes, flight path angles, or horizontal track. The combinations of buttons
statuses and dialed input, relative to themselves and each other define the control
mode configuration.

Cockpit switches were any of the bezel switches located in the cockpit. The
switches useful to the TTFIM system were the ones the pilot used to impose his
choice of display configuration overrides, and were located on both sides of the PFD

screen. The switches correspondin_ to the optional information formats (total of 9)
were two-value bezel switches that indicated whether the pilot wanted the particular
piece of information or not. These switches reflected the pilot's preference

regarding the following symbols: Reference Altitude, Vertical Path, Glideslope
Deviation, Horizontal Deviation, Localizer Deviation, Crosstrack Deviation,
Runway Image, Waypoint Star, and Commanded Airspeed. The remaining switches
corresponded to the flight phases and were either on or off, and only one could be
on at any given time.

Sensor and system information consisted of information in the navigation
computer (e.g., signal availability), sensory values, and various numerical and
boolean data residing in other s),stems onboard the TSRV. The sensor and system
information looked at by TI'FIM were whether not a glideslope signal was valid,
whether or not a localizer signal was valid, whether or not another waypoint existed
to be displayed, whether or not the waypoint was within the displayable range,
whether or not runway information was available, aircraft altitude (both barometric
and radar), decision height, aircraft offset from horizontal path, runway length,
aircraft heading, runway heading, and aircraft track.

Current flight phase was the most interesting of the inputs to TI'FIM.
Needing to know the flight phase meant that either the pilot would have to input the
information as it changed, or some means of automating the detection needed to be

pursued. Both methods were employed. For the first stage of the implementation,
the pilot had to manually input the phases using the bezelswitches on the left side
of the screen, then the flight-phase detection was automated to achieve the "human-
centered" objectives discussed in this paper.
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When requiring the pilot to input the phase of flight, TTFIM only used six
phases: taxi, takeoff, climb, cruise, descend, and land (see the bezel switches on the
left of the PFD - Figure A-I). For automatic flight-phase detection, eight phases
were used: taxi, takeoff, terminal climb, enroute climb, cruise, enroute descend,
terminal descend, and land. The data used to detect flight p.hases were the squat

switch status, gear status, epr value, gamma value, flaps settings, reverser status,
radar altitude, barometric altitude, and the previous flight phase.
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Appendix E
Information Management Logic

The following logic represents that used in the T-I'FIM flight tests for
determining the optnonal information to present. The intent of these rules were to
duplicate the logic used in the traditional baseline implementation. Therefore, even
when simplifications could be made, they were not. The rules appear here as they

were in the flight tests.

HORIZONTAL DEVIATION

if flight phase is not TX
HOR display switch is on

horizontal track in navigation computer is valid
FLARE GUIDE symbol is not actwe
TRACK-ANGLE ERROR {2} symbol is not active
LOCALIZER DEVIATION symbol is not active
radar altitude is greater than 260'

HORIZONTAL DEVIATION

if flight phase is not TX
HOR display switch is on

horizontal track in navigation computer is valid
FLARE-GUIDE symbol is not actnve
TRACK-ANGLE ERROR {2} symbol is not active
LOCALIZER DEVIATION symbol is not active

TRACK-ANGLE ERROR {2}

if flight phase is TX or T/O

XTK display switch is on
automatic track angle mode is preselected or engaged

automatic horizontal path mode is not armed
FLARE GUIDE symbol is not active

TRACK-ANGLE ERROR {2}
if automatic track angle mode is preselected or engaged

XTK display switch is on
automatic horizontal path mode is not armed
FLARE-GUIDE symbol is not active
radar altitude is greater than 260'

TRACK-ANGLE ERROR {4}
if flight phase is LD

XTK display switch is on
localizer is valid

FLARE-GUIDE symbol is not active
radar altitude is grater than 260'

TRACK-ANGLE ERROR { }
if flight phase is T/O

XTK display switch is on
horizontal track in navigation computer is valid
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FLARE-GUIDE symbol is not active
TRACK-ANGLE ERROR {2} symbol is not active
TRACK-ANGLE ERROR {4} symbol is not active

TRACK-ANGLE ERROR { }
if flight phase is not TX

XTK display switch is on
horizontal track in navigation computer is valid
FLARE-GUIDE symbol is not actwe
TRACK-ANGLE ERROR {2} symbol is not active
TRACK-ANGLE ERROR {4} symbol is not active
radar altitude is greater than 260'

VERTICAL PATH

if VRT display switch is on
vertical path in navigation computer is valid
GLIDESLOPE DEVIATION symbol is not active
REFERENCE ALTITUDE symbol is not active

REFERENCE ALTITUDE

if flight phase is not TX
automatic altitude hold mode is preselected, armed, or engaged
automatic land mode is armed or enga_ged
GLIDESLOPE DEVIATION symbol _s not active

REFERENCE ALTITUDE

if flight phase is not TX
RALT display switch is on
automatic altitude hold mode is preselected, armed, or engaged
automatic enable mode is engaged
automatic track angle mode is engaged
automatic flight path angle mode is engaged
GLIDESLOPE DEVIATION symbol _s not active

REFERENCE ALTITUDE

if flight phase is not TX
RALT display switch is on
automatic altitude hold mode is preselected, armed, or engaged
automatic attitude control (a-cws) mode is engaged

or automatic velocity vector control (v-cws) mode is engaged
GLIDESLOPE DEVIATION symbol is not active

REFERENCE ALTITUDE

if flight phase is not TX
RALT display switch is on
automatic track angle mode is engaged or h-path mode is engaged
automatic enable mode is engaged
automatic altitude hold mode is engaged
GLIDESLOPE DEVIATION symbolis not active

GLIDESLOPE DEVIATION

if flight phase is LD or TD
G/S display switch is on
automatic attitude control (a-cws) mode is engaged
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or automatic velocity vector control (v-cws) mode is engaged
glideslope signal is valid

GLIDESLOPE DEVIATION

if flight phase is LD or TD
G/S display switch is on
glideslope signal is valid
automatic enable mode is engaged

automatic flight path angle mode is engaged

GLIDESLOPE DEVIATION

if flight phase is LD or TD

G/S display switch is on
glideslope signal is valid
automatic enable mode is engaged
automatic land mode is armed or engaged

RADAR ALTITUDE

if flight phase is TD, TC, EC, ED, or LD
radar altitude is less than 1300'

RUNWAY IMAGE

if flight phase is TD or LD
RWY display switch is on
runway is within coverage cone

runway in navigation computer is valid
a/c is within coverage cone
altitude is less than or equal to 5000'

WAYPOINT STAR

if STAR display switch is on
horizontal track in navigation computer is valid
there is another waypoint in the navigation computer
waypoint is within range

FLARE GUIDE

if flight phase is LD
automatic velocity vector control (v-cws) mode is engaged
radar-alt is less than the decision height

FLARE GUIDE

if flight phase is LD
automatic velocity vector control (v-cws) mode is engaged
radar-alt is less than 200'

LOCALIZER DEVIATION

if flight phase is LD or TD
LOC display switch is on
localizer signal is valid
FLARE-GUIDE symbol is not active
radar-alt is greater than 260'

COMMANDED AIR SPEED {1}
if automatic commanded airspeed hold mode is preselected or engaged
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COMMANDED AIR SPEED {2}
if automatic time path mode is engaged

CAS display switch is on

last waypoint in navigation computer is false
COMMANDED AIR SPEED symbol { 1} is not active
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Appendix F
Implementation and Integration Issues

TTFIM's final system design was implemented and integrated for flight tests
onboard NASA, Langley's TSRV aircraft (see appendix B) using a commercial
knowledge-based expert system development shell. Implementation and
integration issues of the flight software are discussed below in sections that describe
the software development environment, the system's knowledge base, the system's
inference mechanism, the operation protocol, and integration modifications that

were necessary to the existing software modules.

The Software Development Environment

Both KBS's (refer to Figure 2-2, page 18) onboard th,e T_RV were developed
and maintained with the Gold Hill Computers' GoldWorks t'rMJexpert system shell.
GoldWorks was a knowledge-based expert system development environment

integrated with Gold Hill's Golden Common LISP Developer software. The
GoldWorks system had two interfaces to accommodate different user needs and
areas of expertise. The menu-based interface allowed non-LISP programmers to
develop the system without using LISP. Whereas, more experienced developers
were able to work with GoldWorks' open architecture through the Developer
interface - a functional interface.

The Knowledge Base

As with most KBS's, the primary implementation concern was the knowledge
base. Everything the KBS knew about the application was contained in the
knowledge base. T-FFIM's knowledge base consisted of both passive and active

knowledge pertaining to task-tailored PFD information management (both
informatnon selection and flight-phase detection). Passive knowledge were facts
known to be true a priori, while active knowledge were any methods (e.g., rules,
daemon functions, etc.) used to make, delete, and modify facts during run-time.

In TTFIM, passive knowledge was used for initializations. For example, the
assertions on page 77 were passive knowledge that initialized, among other things,

the phase of flight. And, in TI'FIM, one use of active knowledge was the rules for
detecting the phase of flight. For example, the rule for takeoff on page 81 would
assert the fact (phase next takeoff) when the facts supporting the following
conditions were true: in auto-detect mode; the previous phase of flight was taxi or

land; the engine reversers are not engaged; epr [greater than 1.8; flaps are set less
than or equal to 30 degrees; and, radar altitude ns less than or equal to 400 feet.

All facts (resulting from both passive and active knowledge) were
represented in GoldWorks with assertions. In addition to the facts (also called
patterm), an assertion contained the fact's dependency information. The
dependency information of an assertion recorded how the assertion was put into the
assertion base (the derivation) and why the assertion was currently in the assertion

base (the justification or logical support).. At any one time, the assertion base
contained all the current factual informauov about TI'FIM (see Figure F-1 below

for an example snapshot of a partial TYFIM assertion base durin_ run-time).
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(G/S VALID-ISON)
(LOC VALID-IS ON)

NAV-PATH VALID-IS ON)

NAVPATH2 VALID-IS ON)
RALT SWITCHED ON)

VERT SWITCHED ON)
G/S SWITCHED ON)

.°°

(CAS SWITCHED ON)
(LOC SWITCHED ON)
(ALT MODE-IS 1)
(TKA MODE-IS 1)

(A-CWS MODE-IS I)
(AUTO MODE-IS 1)

)°)

(LAND MODE-IS I)
(FPA MODE-IS I)
(V-CWS MODE-IS 4)
(CAS MODE-IS 2)
(DEC-HEIGHT IS 1000)

"')kLTITUDE IS 100)

EPR IS 185)
CAS-REF-BUF SYMBOL OFF)
FLARE-GUIDE SYMBOL OFF)

RAD-ALT SYMBOL OFF)
_WY-IMAGE SYMBOL OFF)

LOC-DEV SYMBOL OFF)

°°°

G/S-DEV SYMBOL OFF)
'REF-ALT SYMBOL OFF)
'VERT-PATH SYMBOL ON)
IWP-STAR SYMBOL ON)
IXTK-DEV SYMBOL ON)
>HOR-DEV SYMBOL ON)
CAS-REF-DIAL SYMBOL ON)

'GEAR DISCRETE-IS ON)
NOW-IS IN-PHASE TAKEOFF)
NOW-IS NOT-IN-PHASE TAXI)

Figure F-1 - Example Snapshot of a l:,ortion of TITIM Assertion Base

36



The justification and logical dependencyportion of the assertionswere used
to support assertionretraction. When an assertion was removed from the assertion

base, the system used the justifications and logical dependency information of the
assertion and removed or retracted all assertnons that logically depended upon it
from the assertion base. When the retraction of one assertion was to cause the

retraction of another assertion, the rule that led from one assertion to the other was

defined with a dependency value of "t". For example, the rule for horizontal
deviation on page 87 of appendix J had a dependency value of t. So, when any of
the assertions needed to fire the horizontal deviation rule were retracted (e.g., (now-
is in-phase takeoff)), the assertion (hor-dev symbol on) would be retracted. On the
other hand, if an assertion was not to be retracted when conditions that put the
assertion in the assertion base were retracted, it was defined with the dependency

value of nil. An example of this was the rule for slave-phase on page 79 of appendix
J, in which the dependency value was nil. When the assertion (shift detect) of this
rule was retracted, it did not retract the assertion generated by the rule (i.e., (now-is
in-phase ?phname), (shift output), or (phase-out is ?phnum)).

Assertion retraction was also enabled when an assertion relation was defined

as functional. The special characteristic of a functional assertions was that when one
functional assertion had the same elements as another functional assertion except
for the last element in the list, it caused the first assertion to be retracted. For
example, DETECT (page 76, appendix J) was defined as a functional assertion
relation. If (detect auto) was asserted first, then (detect manual) was asserted later,
the assertion (detect auto) was retracted.

TITIM's assertion base was also modified by daemon functions. TI'FIM
made use of GoldWorks daemon capability to perform overhead operations (e.g.,
re-initializing values). For example, the when-modified facets of frame instances
allowed a LISP function to be attached. Whenever a slot value associated with the

daemon function was modified (asserted, retracted or modified), the system
evaluated the LISP functions in the order listed. For example, the instance

SYMBOL (page 74 of appendix J) defines when-modified daemons to each of its
slot values to indicate a modification to the output module (new show) and to re-
initialize the symbols to off (off-set).

The Inference Engine

While the knowledge base contained the information specific to TI'FIM, the
inference engine contained the facilities that caused the system to make inferences
about the data. The inference engine was responsible for applying the active
knowledge to the factual data (i.e., assertions) when searching for solutions.
Pattern-matching was used to match the antecedents and/or consequents of defined
methods (e.g., rules, daemon functions, etc.) to assertions in the assertion base.

Several inferencin_g techniques were available in GoldWorks (i.e., forward
chaining, backward chaining, or a combination of forward and backward chaining).
In addition, GoldWorks allowed the control of the inference process to be altered
by the use of priorities. TFFIM consisted primarily of data-driven production rules.
The forward-chaining of TI'FIM was used to infer solutions from assertions that
existed in the assertion base. The forward-chaining was initiated when the
antecedent, or "if," portion of a forward rule matched a set of assertions in the
knowledge base. When the rule was matched and ready to fire, the inference engine
created an agenda item. When the agenda item fired, the consequent of the rule
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entered new assertions into the knowledge base. These assertions in turn could
cause more agenda items to be created, continuing the forward chaining.

As mentioned above, GoldWorks allowed the control of the inference to be

altered by usin_ priorities. The higher the priority, the sooner the rule was applied
to the agenda hst. T'I'FIM used priorities and the SHIFT relation (appendix J, page
76) to control the ordering of agenda items.

Operation Protocol

During flight, the TI'FIM KBS software operated in interpreted-LISP mode
on a Gold Hill Computers' HummingBoard card, installed in an 80286-based
Personal Computer (PC) clone. The HummingBoard was an 80386-based CPU that
could be housed in any 8088-based PC, 80286-based PC, or compatible. TITIM's
process communicated with the display ]processes on the Norden computer, by
sending display symbol control words, via the common data transfer system called
the Digital Autonomous Terminal Access Communication (DATAC) bus.

All of the various functions of the TSRV were networked through the
DATAC bus. The DATAC bus was also the means for retrieving the massive
amount of input data necessary to TI'FIM. The DATAC bus was a 1 megahertz
serial bus which operated in broadcast mode - every terminal on the bus had access
to the transmissions of all other terminals on the bus. All aircraft parameters from
sensor interface pallets, and all flight commands, were distributed over the DATAC
bus for access from any of the various stations depicted in Figure B-2 (page 36).

GoldWorks' built-in low-level functions permitted TI'FIM to communicate
with the DATAC bus by accessing certain areas of the host PC's memory. When
TI'FIM read from or wrote to the special area of the PC memory, a PC resident
program did the appropriate transfer (i.e., read or write) on the DATAC bus.

All of TI'FIM's data were formatted into the low byte of the specified
DATAC address. The upper bytes of the DATAC words were not used since the
TI'FIM hardware was not able to address the upper byte. TTFIM outputs consisted
of fourpacked discrete bytes. The bytes were put on the DATAC bus as the low
bytes of four DATAC words. The first two words indicated the state of the 14
configurations of optional PFD symbols controlled by "ITFIM. The third word
indicated the detected phase of flight. And, the fourth word was a one bit error flag.
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TABLE F-1

qTFIM Output Control Words

Display Control Word Bit Indication

0 0 Reference Altitude

1 Waypoint Star
2 Horizontal Deviation

3 Glideslope Deviation
4 Localizer Deviation

5 CAS Reference (dial)
6 CAS Reference (buffer)

0 Runway Image
1 Radar Altitude
2 Vertical Path
3 Flare-Guide

4 Track-Angle Error 1
5 Track-Angle Error 2
6 Track-Angle Error 3

2 0 Takeoff
1 Terminal Climb

2 Cruise
3 Terminal Descent
4 Land
5 Taxi

6 Enroute Climb
7 Enroute Descend

3 0 Error Flag (for flight phase)

The formatting and final control of all displays in the TSRV were the

responsibilities of the Displays computer (shown in Figure B-2, page 36). The
Displays computer produced the high-level commands needed by the display
systems in the aft cockpit (i.e., graphics commands). The logical decision of which
optional information display elements to present on the PFD was formerly
embedded in these high-level display commands. However, with the KBS in
operation, the logic portion of the Displays computer software was disabled. The
Display computer looked for the display control words from the KBS to determine
which optional information display elements to present.

Baseline Software Modifications

In addition to the KBS development, this effort required modification of the
displays input/output (I/O) handler as well as the I/O data common. I/O routines
were written to format the input discretes reed by the GoldWorks software, and to
unpack the output discretes which controlled the display of optional display symbols
on the PFD (see Table F-l) and dictate which phase of flight to indicate in the top
left corner of the PFD. Display modules were modified to accept the output
discretes from the GoldWorks software. The modules were modified in such a way
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that control of the optional displaysymbolscould be determinedby either the
presentlogic or the KBS software. Control wasswitchedvia a configuration word
setinteractively by the experimenter.

Implementing the TrFIM softwarealso includedthe redefinition of several
bezelson the PFD. The eight bezelson the left of the PFD were usedfor manual
selectionof phaseof flight (when not in automaticdetection mode) and the seventh
bezel on the right wasusedto selectmanualor automatic phaseof flight
configuration.
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Appendix G
Flight-Phase Detection Rules

The following logic represents that used in the TFFIM flight tests for
determining the phase of flight. As with the information management logic, the
flight-phase detection logic appears as it did in the flight tests, even though
simplifications can now be made.

The flight-phase detection rules were "transition-in" rules, meaning that the
conditions required for a flight-phase to be active only needed to be true to start
that phase, not to stay in that phase. Once in a specified phase of flight, the only

way the system would transition into another phase of flight was if the conditions for
another phase became true (not if the conditions of the current were not true). For
example, one of the conditions in the rule for takeoff stated that the flight phase in
the previous cycle was either taxi or land (i.e., Last-Phase = TX or LD). One cycle
after the phase of flight became takeoff, the "last- phase" variable was set to takeoff,
thus not satisfying the condition stating that the last-phase must be either taxi or
land. However, the phase of flight remained takeoff until the conditions of another
phase became true.

TAXI (TX)
Last-Phase =- T/O or LD

Squat-Switch = GROUND
Gear = DOWN
EPR < 1.8
-1.0 ° < GAMMA < 1.0 °
Radar-Altitude < = 10'
FLAPS < 5 °

TAKEOFF (T/O)
Last-Phase = TX or LD
Reversers = OFF
EPR > 1.8
Radar-Altitude < = 400'

Flaps < = 30 °

TERMINAL-CLIMB (TC)
Last-Phase = T/O or TD
Squat-Switch = AIR
Gear = UP
Gamma > = 1.0 °
Radar-Altitude > = 400'
Barometric-Altitude < 5000'

Flaps < = 15 °

ENROUTE-CLIMB (EC)
Last-Phase = TC or CR or ED

Squat-Switch = AIR
Gear = UP
EPR > 1.2
Gamma > = 1.0 °
Barometric-Altitude > = 10000
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CRUISE (CR)
Last-Phase = EC or ED

Squat-Switch = AIR
Gear = UP
EPR > 1.2
-1.0 ° < Gamma < 1.0 °

Flaps = 0 °
Barometric-Altitude > = 10000

ENROUTE-DESCENT (ED)
Last-Phase = CR or ED

Squat-Switch = AIR
Gear = UP

EPR < 1.4
Gamma < -1.0 °

Barometric-Altitude > = 10000

TERMINAL-DESCENT (TD)
Last-Phase = TC or ED

Squat-Switch = AIR
EPR < 1.4
Gamma < -1.0"
Barometric-Altitude < 10000

LAND (LD)
Last-Phase = T/O or TD or TC
Gear = DOWN
EPR < 1.8
Gamma < = 0 °

Flaps > = 15 °
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Appendix H
Stage 1 Flight-Test Envelopes

The stage 1 flight tests of TI'FIM were done during the baseline verification
flights on June 7 and 13, 1989. The functionality of TTFIM at this stage, was to
duplicate the functionality of the traditional implementation in the baseline,
therefore transparent to the pilot. So, dedicated flight tests were not necessary. The
flight-test envelope for the June 7 and 13, 1989, are given in the tables below.

TABLE H- 1

June 7, 1989, TSRV Flight-Test Envelope

Flt.Deck Configuration Purpose Procedure

RFD Cruise-Trimmed VCWS mode check Engage RFD

Sidearm control Display system check Select VCWS

Check pitch roll &

yaw

FFD STAR WFB 13

(see Figure H-I)
Altitude 4000'

210 kts

ADIRS

Autothrottle

MLS autoland evaluation

New throttle

Engage auto HOR
& VERT path
Enter star at first

waypoint
Enable MLS when
MLS is valid
Pilot call out alt &
cross track errors at

MLS engage
Arm land mode in
final turn

Continue landing
through rollout

RFD STAR WFB13

(see Figure H-l)
Altitude 4000'

210 kts

SAC config 1.0

ADIRS

Manual MLS

Approach & hmding

Pilot evaluation of SAC

configuration

Engage VCWS &
autothrottles
Enter star at first

waypoint
Enable MLS when
valid
Pilot call out alt &
crosstrack errors at

MLS engage
Continue approach
to go-around

RFD SAC config 2.0 Pilot evaluation of SAC

alternate configuration

Repeat previous
procedure
Exercise Lateral
Trim Switch
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TABLE H-1 (continued)

Flt.Deck Configuration Purpose Procedure

RFD SAC config 3.0 Sameasprevious Repeatprevious
procedure

RFD Gear up Stick shakercheck EngageRFD

Flapsup AOA vanecheck

CAS = 210 kts

Altitude 10,000'

Selectaltitude hold

Set idle thrust - FFD
safetypilot should
checkthat throttles
are on AFT stop
FFD Pilot should
call out CL/CLmax
valuesin .1 inc

RFD pilot initiates
recovery

RFD Gear up Same as previous Repeat previous
procedure

Flaps 1

CAS = 200 kts

RFD Gear up Same as previous Repeat previous
procedure

Flaps 5

CAS = 195 kts

RFD Gear up Same as previous Repeat previous
procedure

Flaps 10

CAS = 180 kts

RFD Gear up Same as previous Repeat previous
procedure

Flaps 15

CAS = 165 kts

RFD Gear up Same as previous Repeat previous
procedure

Flaps 25

CAS = 160 kts
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TABLE H-1 (continued)

Fit.Deck Configuration Purpose Procedure

RFD Gear down Same as previous Repeat previous
procedure

Flaps 25

CAS = 160 kts

RFD Gear down Same as previous Repeat previous
procedure

Flaps 30

CAS = 155 kts

RFD Gear down Same as previous Repeat previous
procedure

Flaps 40

CAS = 140 kts

RFD Cruise-trimmed

Altitude 10,000'

CAS = 250 kts

SAC Config X.lp*

VCWS performance

Longitudinal axis

Display evaluation

Engage RFD VCWS
Apply 1/4 PMC step

input up allowing 2
deg increase in att
Release & allow to
stabilize
Return to level

Displays verify:
flight path angle
command, symbol
& position, pitch
attitude, VCWS
indication, drift

angle indication

RFD same as previous same as previous Repeat previous
procedure for 1/4
PMC down & 2 deg
attitude decrease

* - either 1, 2, or 3, depending on results of previous runs
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TABLE H-2
June 13,1989,TSRV Flight-Test Envelope

Fit.Deck Configuration Purpose Procedure

RFD Cruise-trimmed VCWS performance
Longitudinal axis

Altitude 10,000'

CAS = 250 kts

SAC Config 4

Display evaluation

Engage RFD VCWS
Apply 1/4 PMC step
input up allowing 2
deg increase in att
Release & allow to

stabilize
Return to level

Displays verify:
fl_ght path angle
command, symbol

& position, pitch
attitude, VCWS
indication, drift
angle indication

RFD same as previous same as previous
with CAS = 300 kts

same as previous

RFD same as previous
with CAS = 250 kts

same as previous
same a_previouswith 1/ PMCdown
& 2 deg attitude
decrease

RFD same as previous same as previous same as previous
with 1//4 PMC up &
5 deg attitude
increase

RFD same as previous same as previous same as previous
with CAS -- 300 kts

RFD same as previous same as previous same as previous

RFD same as previous same as previous same as previous

RFD same as previous same as previous same as previous

RFD Cruise-Trimmed VCWS performance RFD engage VCWS
Longitudinal axis Increase flight path

Altitude 10,000' angle in 1 deg steps
to 5 deg, stabilizing

CAS = 250 kts at each step
Return to level

Precise control

Display symbology checks
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TABLE H-2 (continued)

Flt.Deck Configuration Purpose Procedure

RFD same as previous same as previous same as previous
with decrease in 1

deg steps to -5 deg,
stabilizing at each

RFD same as previous same as previous same as previous
with increases and

using manual click
trim switch

RFD Cruise-Trimmed

Altitude > 10,000'

SAC config 4

Manual Throttle fixed
CAS = 250 kts

Manual electric pitch
stability check

Disconnect RFD

Trim a/c
Reengage RFD
Apply 1/4 PMC step
input up allowing
2 deg increase in alt
Release, allow to
stabilize
Return to level

Display verify:
fl_ght path angle
command, symbol

& position, pitch
attitude, VCWS
indication, drift
angle indication

RFD same as previous same as previous
with CAS = 300 kts

same as previous
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Figure H- 1 - STAR WFB 13
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Appendix I
Stage 2 Flight-Test Envelope

One objective of the November 13, 1989 flight test was to functionally test
and check out the operation of the flight-phase detection KBS and the integration of
the KBS with the information selection KBS and other onboard systems (primarily
to check out the automatic flight-phase detection). The flight-test envelope for this
flight test is given in the Table below.

TABLE I- 1

November 13, 1989, Portion of the TSRV Flight-Test Envelope

Flt.Deck Configuration Purpose Procedure

RFD Altitude < 10,000' 'ITFIM automatic flight-
phase detection check in
terminal area

TX

T/O
TC - then level off
TD - then level off

RFD same as previous same as previous TC - no level off
TD - no level off

RFD Altitude > 10,000' "ITFIM automatic flight-
phase detection check
outside terminal area

TC
EC

CR - level off, vary
gamma (-1 and 1)

ED
CR
EC
CR

EC- no level off,

straight to next run

RFD Touch and go
STAR WFB 13

(see Figure H-l)

same as previous for
touch and go

ED
TD

LD - touch and go
T/O

RFD Full mission phase
detection

same as previous for
full mission

TC
EC
CR
ED
TD
LD
TX
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Appendix J
GoldWorks Code

The following are the GoldWorks files used in the flight tests. Minor
changes were made to make the code more readable (e.g., documentation). Note
that 'Track-Angle Error" is consistently referred to as Crosstrack Deviation in the

following code. No effort was made to correct this conflict in the following code.

The "Crosstrack Deviation" output from this code was interpreted by the Display
computer as meaning "Track-Angle Error."

;;
;;
;;
;;

;;
;;

defframe.lsp -- dolm: 1-12-90

Defines all frames. Each of the frames will be described in detail using in-line
documentation.

(in-package 'gw)

;; CURRENT is a top-frame used to categorize the instances NOT-IN-PHASE, and
,, IN-PHASE. The fields defined here that will be inherited by all instances of

;; CURRENT are: NOW-IS -- to specify the what the current phase is or is not and,
;; ERR-FLG -- to be set when an error in the logic occurs.

(DEFINE-FRAME CURRENT
(:print-name "CURRENT'

:doc-string '"'
:is TOP-FRAME)

(NOW-IS
:default-values (TAXI)
:constraints (:ONE-OF (TAXI TAKEOFF TERM-CB TERM-DS ENR-CB

ENR-DS CRUISE LAND)))
(ERR-FLG

:default-values (0)
:constraints (:ONE-OF (0 1))))

;; DSPLAY is a top-frame used to categorize the instance of SYMBOL (just one
,, instance at the present time). The fields defined here that will be inherited by
,, all instances of DSPLAY are each symbols on the PFD that will be either on or
..,, off.

(DEFINE-FRAME DSPLAY
(:print-name "DSPLAY"
:doc-string '"'
:is TOP-FRAME)

(REF-ALT
:default-values (OFF)

:constraints (:ONE-OF (OFF ON)))
(G/S-DEV

:default-values (OFF)
:constraints (:ONE-OF (OFF ON)))

(XTK-DEV
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:default-values (OFF)
:constraints(:ONE-OF

(XTK-DEV2
:default-values (OFF)
:constraints(:ONE-OF

(XTK-DEV4
:default-values (OFF)
:constraints(:ONE-OF

(WP-STAR
:default-values (OFF)
:constraints(:ONE-OF

(LOC-DEV
:default-values (OFF)
:constraints(:ONE-OF

(RWY-IMAGE
:default-values (OFF)
:constraints(:ONE-OF

(RAD-ALT
:default-values (OFF)
:constraints(:ONE-OF

(HOR-DEV
:default-values (OFF)
:constraints(:ONE-OF

(FlARE-GUIDE
:default-values (OFF)
:constraints(:ONE-OF

(CAS-REF-DIAL
:default-values (OFF)
:constraints(:ONE-OF

(CAS-REF-BUF
:default-values (OFF)
:constraints(:ONE-OF

(VERT-PATH
:default-values (OFF)
:constraints(:ONE-OF

(OFF ON)))

(OFF ON)))

(OFF ON)))

(OFF ON)))

(OFF ON)))

(OFF ON)))

(OFF ON)))

(OFF ON)))

(OFF ON)))

(OFF ON)))

(OFF ON)))

(OFF ON))))

;; CONTROL is a top-frame usedto categorizethe instancesof SHOW and INIT.
;; The fields defined here that will be inherited by all instancesof CONTROL are:
;; DLOAD -- to specifywhether or not to download from the DATAC bus;
ULOAD --
;; to specifywhether or not to upload to the DATAC bus;and,STATUS -- to
indicate
;; that anupdate to the displaycontrol words had occurred.

(DEFINE-FRAME CONTROL
(:print-name "CONTROL"
:doc-string....
:is TOP-FRAME)
(DLOAD

:default-values (NO)
:constraints(:ONE-OF (NO YES)))

(ULOAD
:default-values (NO)
:constraints(:ONE-OF (NO YES)))

51



(STATUS
:default-values (0)))

;; A/C-STATUS is a top-frame used only for categorization. There are no
,, inheritance fields. The next level in this lattice _s still a frame. All instances will

;; be of the sub-frames grouped under this top-frame. The sub-frames are BEZEL,
;; CMS, VALIDS, BOOLS, and ANALOG.

(DEFINE-FRAME A/C-STATUS
(:print-name "A/C-STATUS"

:doc-string '"'
:is TOP-FRAME))

;; BEZEL is a sub-frame of A/C-STATUS. The instance of BEZEL are used to
;; assert which selection switches have been set. There are 10 fields defined in

;; BEZEL and inherited by SWITCHED -- each can be either ON or OFF.

(DEFINE-FRAME BEZEL
(:print-name "BEZEL"
:doc-string"
:is A/C-STATUS)
(RALT

:default-values (OFF)
:constraints (:ONE-OF

(VRT
:default-values (OFF)
:constraints (:ONE-OF

(G/S
:default-values (OFF)
:constraints (:ONE-OF

(XTK
:default-values (OFF)
:constraints (:ONE-OF

(STAR

:default-values (OFF)
:constraints (:ONE-OF

(HOR

:default-values (OFF)
:constraints (:ONE-OF

(RWY
:default-values (OFF)
:constraints (:ONE-OF

(CAS

:default-values (OFF)
:constraints (:ONE-OF

(LOC

:default-values (OFF)
:constraints (:ONE-OF

(AUTO-PHASE

:default-values (OFF)
:constraints (:ONE-OF

(OFF ON 0 1)))

(OFF ON 0 1)))

(OFF ON 0 1)))

(OFF ON 0 1)))

(OFF ON 0 1)))

(OFF ON 0 1)))

(OFF ON 0 1)))

(OFF ON 0 1)))

(OFF ON 0 1)))

(OFF ON 0 1))))

;; CMS is a sub-frame of A/C-STATUS. The instance of CMS is MODE-IS which
;; is used to indicate which automatic control mode the airplane is configured for (if
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;; any). There are 11 fields defined in CMS mappingto eachof the switcheson the
;; mode control panel. While the selectionsare more limited for some than others,
;; eachof the fields will rangefrom 1to 4 (the most).

(DEFINE-FRAME CMS
(:print-name "CMS"
:doc-string'"'
:is A/C-STATUS)
(CAS

:default-values (1)
:constraints(:RANGE (1 4)))

(ALT
:default-values (1)
:constraints (:RANGE (1 4)))

(TKA
:default-values (1)

:constraints (:RANGE (1 4)))
(v-cws

:default-values (1)
:constraints (:RANGE (1 4)))

(A-CWS
:default-values (1)
:constraints (:RANGE (1 4)))

(AUTO
:default-values (1)

:constraints (:RANGE (1 4)))
(H-PATH

:default-values (1)
:constraints (:RANGE (1 4)))

(V-PATH
:default-values (1)
:constraints (:RANGE (1 4)))

(T-PATH
:default-values (1)
:constraints (:RANGE (1 4)))

(LAND
:default-values (1)
:constraints (:RANGE (1 4)))

(FPA
:default-values (1)
:constraints (:RANGE (1 4))))

;; VALIDS is a sub-frame of A/C-STATUS. The instance of VALIDS is VALID-IS
• ° ° ' * ° ° n ';; which is used to assert whmh signals are currently valid m the alrpla e s

,, computer. Each of the inheritance fields can be either ON or OFF (i.e., valid or
,, not valid).

(DEFINE-FRAME VALIDS
(:print-name "VALIDS"
:doc-string ....
:is A/C-STATUS)
(G/s

:print-name ....
:default-values (OFF)
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:constraints (:ONE-OF (OFF ON)))

(LOC
:default-values (OFF)
:constraints (:ONE-OF (OFF ON)))

(NAV-PATH
:default-values (OFF)
:constraints (:ONE-OF (OFF ON)))

(NAVPATH2
:default-values (OFF)
:constraints (:ONE-OF (OFF ON))))

BOOLS is a sub-frame of A/C-STATUS. The instance of BOOLS is,o

_? DISCRETE-IS. The inheritance fields of BOOLS are used for asserting boolean

'.'. information pertaining to the aircraft's current configuration

(DEFINE-FRAME BOOLS
(:print-name "BOOLS"
:doc-string""
:is A/C-STATUS)

(LAST-WP
:default-values (OFF)
:constraints (:ONE-OF (OFF ON)))

(RWY-IN-NAV
:default-values (OFF)
:constraints (:ONE-OF (OFF ON)))

(IN-COVERAGE
:default-values (OFF)
:constraints (:ONE-OF (OFF ON)))

(WP-ALERT
:default-values (OFF)
:constraints (:ONE-OF (OFF ON)))

(WP-DISPLAYABLE
:default-values (OFF)
:constraints (:ONE-OF (OFF ON)))

(GEAR
:default-values (OFF)
:constraints (:ONE-OF (OFF ON)))

(SQUAT
:default-values (OFF)
:constraints (:ONE-OF (OFF ON)))

(TREVERSE
:default-values (OFF)
:constraints (:ONE-OF (OFF ON))))

;; ANALOG is a sub-frame of A/C-STATUS. The instance of ANALOG is IS
;; which is used to assert information about the aircraft that takes on analog values

• (e.g., like altitude). Likewise, the inheritance fields of the ANALOG refer to
',', analog values needed by "ITFIM.

(DEFINE-FRAME ANALOG
(:print-name "ANALOG"
:doc-string'"'
:is A/C-STATUS)

(ALTITUDE
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:default-values (0)

:constraints (:RANGE (-100 25000)))
(DEC-HEIGHT

:default-values (1000)
:constraints (:RANGE (0 2500)))

FLAPS)
EPR)
GAMMA)

RADAR-ALT)
PHASE-IN

:default-values (0)
:constraints (:RANGE (0 128)))

(PHASE-OUT

:default-values (0)
:constraints (:RANGE (0 128)))

(RWY-HEADING

:default-values (0)
:constraints (:RANGE (-180 180)))

(A/C-TRACK
:default-values (0)
:constraints (:RANGE (-180 180))))

definstn.lsp -- dolm: 1-16-90

Defines (and makes) all instances.
detail using in-line documentation.

Each of the instances will be described in

;; NOT-IN-PHASE inherits CURRENT fields with nothing extra.

(DEFINE-INSTANCE NOT-IN-PHASE
(:print-name "NOT-IN-PHASE"

:doc-string ....
:is CURRENT)

NOW-IS TAXI)
ERR-FLG 0)
)

;; IN-PHASE inherits CURRENT fields with 2 additions. When the phase of flight
;; is modified, the when-modified daemon calls NEW-SHOW to set the system flag
;; noting that a new phase needs to be displayed. If an error occurs in the automatic
;; flight-phase detection logic, the when-modified daemon calls ZERO-SET to
;; change the value back to 0.

(MAKE-INSTANCE 'IN-PHASE
:print-name "IN-PHASE"

:doc-string ....
:is 'CURRENT
:slots

,(
NOW-IS :VALUE TAXI :WHEN-MODIFIED (NEW-SHOW))

RR-FLG :VALUE 0 :WHEN-MODIFIED (ZERO-SET))
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;; DISCRETE-IS inherits the slotsof flame BOOLS with all slots initialized to
;; OFF.

(DEFINE-INSTANCE DISCRETE-IS
(:print-name "DISCRETE-IS"
:doc-string'"'
:is BOOLS)
LAST-WP OFF)
RWY-IN-NAV OFF)
IN-COVERAGE OFF)
WP-ALERT OFF)

WP-DISPLAYABLE OFF)
GEAR OFF)
SQUAT OFF)
'IRE'VERSE OFF)
)

;; SHOW inherits the fields of CONTROL. The fields are used to control

;; execution characteristics of TI'FIM. DLOAD is used to control the downloading
;; from the DATAC card. ULOAD controls the uploading to the DATAC card.
,, And, STATUS is used to indicate a change has occurred.

(DEFINE-INSTANCE SHOW
(:print-name "SHOW"

:doc-string ....
:Is CONTROL)
sDLOAD NO)
ULOAD NO)

TATUS 0)

;; INIT inherits the fields of CONTROL with 2 additions. DLOAD is to control the
;; downloading from the DATAC card to the TTFIM software. When DLOAD is

;; modified, the daemon calls FULLOAD to signify a full loading of all DATAC
;; values. ULOAD works as the inverse of DLOAD with an inverse daemon
;; function SEND-DSP-CMD.

(MAKE-INSTANCE 'INIT
:print-name "INIT'

:doc-string ....
:is 'CONTROL
:slots

,(
DLOAD :VALUE NO :WHEN-MODIFIED (FULLOAD))
ULOAD :VALUE NO :WHEN-MODIFIED (SEND-DSP-CMD))

ATUS :VALUE O)

;; SYMBOL is an instance of DSPLAY. Each of the display symbols are initialized

;; to OFF with when-modified daemons calling function NEW-SHOW to notify the
,, system that a change has been made, and function OFF-SET to change it back to
,, OFF. Note, how the rule are stated will only turn a symbol ON, not OFF.

;; Therefore, they are cut off each time (in this system only) and turned on again if



;; they are still activeon the next cycle.

(MAKE-INSTANCE 'SYMBOL
:print-name "SYMBOL"
:doc-string'"'
:is 'DSPLAY

:slots

'(
REF-ALT :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET))
G/S-DEV :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET))
XTK-DEV :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET))

XTK-DEV2 :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET))
XTK-DEV4 :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET))

WP-STAR :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET))
LOC-DEV :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET))

RWY-IMAGE :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET))
RAD-ALT :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET))
HOR-DEV :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET))
FLARE-GUIDE :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET))
CAS-REF-DIAL :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET))

CAS-REF-BUF :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET))

()_ERT-PATH :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET))

;; IS is an instance of ANALOG and is used to initialize the value of ALTITUDE to

;; 0, DEC-HEIGHT to 1000, PHASE-IN to 0, PHASE-OUT to 0,
;; RWY-HEADING to 0, and A/C-TRACK to 0. Note that throughout this system,

;; all variables (slots or assertions) that refer to altitude take on a half value due to
;; restrictions of the systems integer values.

(DEFINE-INSTANCE IS

(:print-name "IS"
:doc-string '"'
:is ANALOG)

(ALTITUDE 0)
(DEC-HEIGHT 1000)
(PHASE-IN 0)
PHASE-OUT 0)
RWY-HEADING 0)
A/C-TRACK 0)
)

;; MODE-IS is an instance of CMS in which each of the control mode switches are

;; initialized to 1.

(DEFINE-INSTANCE MODE-IS
(:print-name "MODE-IS"
:doc-string ....
:is CMS)

CAS 1)
ALT 1)
TKA1)
V-CWS
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AUTO 1)
H-PATH 1)
V-PATH 1)
T-PATH 1)
LAND 1)
FPA 1)

;; SWITCHED is an instance of BEZEL in which each of the bezel switches

;; associated to display options are initialized to OFF. Note, the last bezel switch
,, mentioned, AUTO-PHASE, is the switch the flight engineer used to toggle
,, between automatic flight-phase detection, and manual flight phase entry.

(DEFINE-INSTANCE SWITCHED
(:print-name "SWITCHED"
:doc-string '"'
:is BEZEL)

RALT OFF)

VRT OFF)
G/S OFF)

XTK OFF)
STAR OFF)

HOR OFF)
RWY OFF)
CAS OFF)
LOC OFF)

UTO-PHASE OFF)

;; VALID-IS is an instance of VALIDS in which it initializes each slot to OFF (or
;; not valid).

(DEFINE-INSTANCE VALID-IS
(:print-name "VALID-IS"
:doc-string'"'
:is VALIDS)
G/S OFF)
LOC OFF)
NAV-PATH OFF)

AVPATH2 OFF)

defreltn.lsp -- dolm:

Defines all relations.
documentation

1-16-90

Each relation will be described in more detail using in-line

(in-package 'gw)

;; EQUIV is used to define table-lookups. For example
;; (EQUIV takeoff 2)
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;; canbe used like (EQUIV ?p2) to bind ?p to takeoff, or like (EQUIV takeoff ?p)
;; to bind ?p to the numerical value of takeoff. This becomes more powerful when
;; all phases are considered and the EQUIV relation is used in rules where the
;; phase is known in either the numerical or symbolic form and not both.

(DEFINE-RELATION EQUIV
(:print-name "EQUIV"
:doc-string '"'
:explanation-string '"'
:LISP-function NIL

:relation-type :ASSERTION)
NIL)

;; SHIFT is used to help dictate the flow of TITIM. SHIFT adds some
;; procedurality to TI'FIM. SHIFT probably could have been left out all together

;; and its role handled by priorities. However, SHIFT makes it easier to
,, understand. Certain rules will chan_e the value of SHIFT to direct the inference
,, to other sections of rules. Shift is a tunctional-assertion and therefore only one
;; assertion of SHIFT can be true at one time.

(DEFINE-RELATION SHIFT

(:print-name "SHIFT"
:doc-string ....
:explanation-string ....
:LISP-function NIL

:relation-type :FUNCTIONAL-ASSERTION)
NIL)

;; DETECT is used to dictate whether the automatic detection of flight phases is on
;; or not. DETECT is a functional assertion.

(DEFINE-RELATION DETECT
(:print-name "DETECT'

:doc-string ....
:explanation-string ....
:LISP-function NIL

:relation-type :FUNCTIONAL-ASSERTION)
NIL)

;; PHASE is used in the flight-phase detection KBS to store the valid flight phases.
;; It's not functional because the rules allow more than one phase to be detected

;; (however, more than one is never detected).

(DEFINE-RELATION PHASE
(:print-name "PHASE"
:doc-string ....
:explanation-string ....
:LISP-function NIL

:relation-type :ASSERTION)
NIL)

defassrt.lsp -- dolm: 1-16-90
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Defines initial assertions.Descriptionsof thesesassertionswill be described
using in-line documentation.

(in-package'gw)

;; Someof theseassertionscanbe madebychangingintial valuesof slots in the
,, appropriate instances. However, it's easier to keep track of them here. The table
;; lookup for the flight phaserelationsare alsodefinedhere.

(DEFINE-ASSERTION
(and

NOW-ISIN-PHASETAXI)
'SHIFT TOP)
'MONITOR DISPLAY ON)
'EQUIV TAKEOFF 1)
EQUIV TERM-CB 2)
EQUIV CRUISE 4)

EQUIV TERM-DS 8)
EQUIV LAND 16)
EQUIV TAXI 32)
EQUIV ENR-CB 64)
EQUIV ENR-DS 128)))

;;
;; r-top.lsp -- dolm: 1-17-90
;;

;; This _roup of rules are to fire first. The order within the group is dictated by the
,, priority value. The fact that this group fires first is dictated by the (SHIFT TOP)
,, which is set during the loading of the system, and after the output of the results.
;; The appropriate rules within this group will fire, then make the assertion (SHIFT
;; DETECT) so that the phase can be detected (either manually or automatically.
;; Each rule's purpose will be described using in-line documentation.
;;

(in-package 'gw)

;; DOWNLOAD sets the DLOAD slot of INIT (an instance of CONTROL) to YES
;; so that the values from the DATAC bus can be loaded into the system.

(DEFINE-RULE DOWNLOAD
(:print-name "DOWNLOAD"
:doc-string ....
:dependency NIL
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 900

:sponsor TOP-SPONSOR)
(SHIFT TOP)

THEN

(INSTANCE INIT IS CONTROL WITH DLOAD YES)
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;; QUERY-AUTO determinesif the user (i.e., pilot) wants to havethe system
;; automatically detect the phaseof flight. If the userwants the automatic
;; detection, the auto-phaseswitchwill be on. Therefore, if the systemis recycling
;; to the top (i.e., SHIFT TOP), and the auto-phaseswitch is on, then assert
,, (DETECT AUTO) so that the rules for automatic detectionwill fire, and turn
;; control over to the detection section(i.e.,SHIFT DETECT).

(DEFINE-RULE QUERY-AUTO
(:print-name "QUERY AUTO"
:doc-string'"'
:dependencyNIL
:direction :FORWARD
:certainty 1.0
:explanation-string....
:priority 800
:sponsorTOP-SPONSOR)
(SHIFT TOP) (AUTO-PHASE SWITCHED ON)

THEN
(DETECT AUTO) (SHIFT DETECT) )

;; QUERY-MANUAL determinesif the user (i.e., pilot) wants to manually indicate
;; the phase of flight. If the user wants manual entry, the auto-phase switch will be

;; off. Therefore, if the system is recycling to the top (i.e., SHIFT TOP), and the
;; auto-phase switch is off, then assert (DETECT MANUAL) so that the rules for
;; automatic detection will not fire, and turn control over to the detection section

;; (i.e., SHIFT DETECT).

(DEFINE-RULE QUERY-MANUAL
(:print-name "QUERY MANUAL"
:doc-string '"'
:dependency NIL
:direction :FORWARD

:certainty 1.0

:explanation-string '"'
:pnonty 800
:sponsor TOP-SPONSOR)

(SHIFT TOP) (AUTO-PHASE SWITCHED OFF)
THEN

(DETECT MANUAL) (SHIFT DETECT) )

r-phases.lsp -- dolm: 1-19-90
;;
;;
;;
;; This group of rules fire after TOP, and before the symbol rules. There is no
;; reason to dictate the transition to the symbol rules with a shift command since the
;; priorities can handle that. The ultimate purpose of these rules is to set the
,, assertion (NOW-IS IN-PHASE ?). The first rule handles the case when manual
;; input of flight phase has been chosen. There is then a series of rules that handle
,, the automatic detection of all valid phases of flights. The last set of rules work
;; with the automatic phase selection by picking one phase out of multiple, none, or
,, one choice given by the previous rules. Transition to the last set of rules is done
,, with (SHIFT READY). After the phase of flight has been chosen, (SHIFT
,, OUTPUT) is set to allow the output section of code to fire. However, the next
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;; setof rules that will fire are the symbolrules sincetheir priority is higher.
;;

;; SLAVE-PHASE isused to determine NOW-IS IN-PHASE when manual

;; selection has been selected. While-in manual selection, PHASE-IN IS is
;; asserted with the numerical equivalence of the flight phase as dictated by the
,, bezel switches beside the PFD. Then.using the EQUIV assertions as a table

,, lookup, NOW-IS IN-PHASE is bound to the symbolic equivalent of the
,, numerical representation of the flight phase. SHIFT is then changed to
;; OUTPUT for the reasons described above.

(DEFINE-RULE SLAVE-PHASE

(:print-name "SLAVE-PHASE"
:doc-string ....
:dependency NIL
:direction :FORWARD

:certainty 1.0

:explanation-string '"'
:priority 800
:sponsor TOP-SPONSOR)

(DETECT MANUAL) (SHIFT DETECT)
(PHASE-IN IS ?PHNUM)
(EQUIV ?PHNAME ?PHNUM)

THEN

NOW-IS IN-PHASE ?PHNAME)
SHIFT OUTPUT) (PHASE-OUT IS ?PHNUM)

;; PHASE-TDS

;; if current-phase = terminal-climb or enroute-descent, and
;; squat-switch = off (i.e., in the air), and
;; gamma < -1.0 degrees, and
;; epr < 1.4, and
;; baro-altitude < 10000'
;; then

;; next-phase = terminal-descent

(DEFINE-RULE PHASE-TDS?
(:print-name "Terminal Descent Test"
:doc-string ""
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 100

:sponsor TOP-SPONSOR)
(DETECT AUTO)
(OR

(NOW-IS IN-PHASE TERM-CB) (NOW-IS IN-PHASE ENR-DS))

SQUAT DISCRETE-IS OFF)
GAMMA IS ?G) (EPR IS ?E) (ALTITUDE IS ?BALT)
< ?G -10) ( < ?E 140) ( < ?BALT 5000)

THEN

(PHASE NEXT TERM-DS))
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;; PHASE-TCB
;;
;;
;;
;;
;;
;;
;;
;;
;;

if current-phase = takeoff or terminal-descent,and
squat-switch= off (i.e., in the air), and
gear = off (i.e., up), and
amma > = 1.0deg.,and

ps < = 15.deg.,and
baro-alt < 10000',and
radar-alt > 400'

then
next-phase= terminal-climb

(DEFINE-RULE PHASE-TCB?
(:print-name "Terminal Climb"
:doc-string....
:dependencyT
:direction :FORWARD
:certainty 1.0
:explanation-string....
:priority 100
:sponsorTOP-SPONSOR)
DETECT AUTO)
OR
(NOW-IS IN-PHASE TAKEOFF) (NOW-IS IN-PHASE TERM-DS))
SQUAT DISCRETE-IS OFF) (GEAR DISCRETE-IS OFF)
GAMMA IS ?G) (FLAPS IS ?F) (RADAR-ALT IS ?RA)
ALTITUDE IS ?BALT) (> = ?G 10) (< = ?F 15)

( > = ?RA 200) (< ?BALT 5000)
THEN
(PHASE NEXT TERM-CB))

;; PHASE-TO
;;
;;
;;
;;
;;
;;
;;

if current-phase = taxi or land, and
flaps < = 30.deg.,and
reversers= off, and
epr > 1.8,and
radar-alt < = 400'

then
next-phase= takeoff

(DEFINE-RULE PHASE-TO?
(:print-name "Takeoff Test"
:doc-string ""
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 100
:sponsor TOP-SPONSOR)
DETECT AUTO)
OR
(NOW-IS IN-PHASE TAXI) (NOW-IS IN-PHASE LAND))

TREVERSE DISCRETE-IS OFF) (EPR IS ?E) (FLAPS IS ?F)
RADAR-ALT IS ?RA) (> ?E 180) (< = ?F 30) (< = ?RA 200)
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THEN
(PHASE NEXT TAKEOFF))

o°,, PHASE-TAXI

if current-phase = takeoff or land, and
squat-switch = on (i.e., on the ground), and

ear = on (i.e., down), and
aps < = 15 deg., and

-1.0 < gamma < 1.0
epr < 1.8, and
radar-alt < = 10'

then

next-phase = taxi

(DEFINE-RULE PHASE-TAXI?
(:print-name 'TAXI-TEST'

:doc-string '"'
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string '"'
:priority 100
:sponsor TOP-SPONSOR)

DETECT AUTO)
OR
(NOW-IS IN-PHASE TAKEOFF) (NOW-IS IN-PHASE LAND))
SQUAT DISCRETE-IS ON) (GEAR DISCRETE-IS ON)
EPR IS ?E) (GAMMA IS ?G) (FLAPS IS ?F)
RADAR-ALT IS ?RA) (< ?E 180) (< ?G 10) (> ?G -10)
<= ?F15)(<=?RA5)

THEN

(PHASE NEXT TAXI))

;; PHASE-LAND
if current-phase = takeoff or land or terminal-descent, and

ear = on (i.e., down), and
ps > = 15 deg., and

gamma < 0.0, and

epr > 1.8
then

next-phase = land

(DEFINE-RULE PHASE-LAND?
(:print-name "LAND-TEST'
:doc-string ....
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 100
:sponsor TOP-SPONSOR)
DETECT AUTO)
OR
(NOW-IS IN-PHASE TAKEOFF) (NOW-IS IN-PHASE TERM-DS)
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(NOW-IS IN-PHASE TERM-CB)) (GEAR DISCRETE-IS ON)
EPR IS ?E) (GAMMA IS ?G) (FLAPS IS ?F) (< ?E 180)
<= ?G0)(>= ?F15)

THEN
(PHASE NEXT LAND))

;; PHASE-EDS
if current-phase= cruiseor enroute-climb, and

squat-switch= off (i.e., in the air), and
gear = off (i.e., up), and
gamma < -1.0,and
epr < 1.4,and
baro-altitude > = 10000'

then

next-phase = enroute-descent

(DEFINE-RULE PHASE-EDS?
(:print-name "Enroute Descent"
:doc-string ....
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string '"'
:priority 100
:sponsor TOP-SPONSOR)

DETECT AUTO)
OR
(NOW-IS IN-PHASE CRUISE) (NOW-IS IN-PHASE ENR-CB))
SQUAT DISCRETE-IS OFF) (GEAR DISCRETE-IS OFF)

GAMMA IS ?G) (EPR IS ?E) (ALTITUDE IS ?BALT)
< ?G -10) (< ?E 140) (> = ?BALT 5000)

THEN

(PHASE NEXT ENR-DS))

;; PHASE-CRUISE

if current-phase = enroute-climb or enroute-descent, and
squat-switch = off (i.e., in the air), and

ear = off (i.e., up), and
aps = 0

-1.0 < gamma < 1.0, and
epr > 1.2, and
baro-altitude > = 10000'

then

next-phase = cruise

(DEFINE-RULE PHASE-CRUISE?

(:print-name "CRUISE-TEST'
:doc-string ....

:dependency T
:direction :FORWARD

:certainty 1.0
:explanation-string ....
:priority 100
:sponsor TOP-SPONSOR)
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DETECT AUTO)
OR
(NOW-IS IN-PHASE ENR-CB) (NOW-IS IN-PHASE ENR-DS))
SQUAT DISCRETE-IS OFF) (GEAR DISCRETE-IS OFF)
FLAPS IS 0) (EPR IS ?E) (GAMMA IS ?G)
ALTITUDE IS ?BALT) (> ?E 120)(> ?G -10) (< ?G 10)
> = ?BALT 5000)

THEN
(PHASE NEXT CRUISE))

;; PHASE-ECB
;; if current-phase= terminal-climb or enroute-descentor
;; cruise, and

;; squat-switch = off (i.e., in the air), and
;; gear = off (i.e., up), and
;; gamma > = 1.0, and
;; epr > 1.2, and
;; baro-altitude > = 10000'
;; then

;; next-phase = cruise

(DEFINE-RULE PHASE-ECB?
(:print-name "Enroute Climb"
:doc-string ....
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 100
:sponsor TOP-SPONSOR)
DETECT AUTO)
OR

NOW-IS IN-PHASE TERM-CB) (NOW-IS IN-PHASE CRUISE)
NOW-IS IN-PHASE ENR-DS)) (SQUAT DISCRETE-IS OFF)

GEAR DISCRETE-IS OFF) (EPR IS ?E) (GAMMA IS ?G)
ALTITUDE IS ?BALT) (> ?E 120) (> = ?G 10)
> = ?BALT 5000)

THEN

(PHASE NEXT ENR-CB))

;; TEST-PHASE-IN sets SHIFT READY if the system is in automatic detection
;; mode, if its still time for DETECT rules, and if a new phase (i.e, PHASE NEXT
;; ?) exists in the assertion lists. A SHIFT READY allows the system to fire the
;; prioritization rules below that address the possibility of multiple choices of flight
;; phases being selected.

(DEFINE-RULE TEST-PHASE-IN
(:print-name "PHASE DETECTED"
:doc-string ""

:dependency NIL
:direction :FORWARD

:certainty 1.0

:explanation-string ""
:priority 50
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:sponsorTOP-SPONSOR)
(DETECT AUTO) (SHIFT DETECT) (PHASE NEXT ?)

THEN
(SHIFT READY))

;; NO-PDETECT takescare of the no phase TRANSITION being detected. Since
II • " I, ' "

,, all of the phase rules are transltlon-m rules, this rule is true most of the time.
;; When this rule is true, the previous phase is still valid. This rule then sets SHIFT
;; OUTPUT.

(DEFINE-RULE NO-PDETECT
(:print-name "NO-PDETECT'

:doc-string '"'
:dependency NIL
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 50

:sponsor TOP-SPONSOR)

(DETECT AUTO) (SHIFT DETECT) (UNKNOWN (PHASE NEXT ?))
THEN

(SHIFT OUTPUT))

;; EXCESS-NEXTS takes care of retracting NEXT phases when more than one
;; exists that are not equal to the previous phase. NOTE: If multiple next phases
;; exists, this rule will always be true and will always retract each of the NEXT

;; p_ases since none will ever equal the previous phase (see note in rule above).
;; _ ne rule is somewhat valid since the phase detection rules should be written

;; where this case can never be true. And, if this case is ever true (but it's not) then
;; the retraction of all NEXT which forces it to stay in the previous phase is valid.

(DEFINE-RULE EXCESS-NEXTS
(:print-name "EXCESS-NEXTS"
:doc-string ....
:dependency NIL
:direction :FORWARD

:certainty 1.0

:explanation-string '"'
:priority 45
:sponsor TOP-SPONSOR)

(SHIFT READY) (PHASE NEXT ?X)- > ?S (PHASE NEXT ?Y)- > ?R
(LAST PHASE ?Z) (NOT-EQUAL ?X ?Y) (NOT-EQUAL ?Z ?X)
(NOT-EQUAL ?Z ?Y)

THEN

(RETRACT ?R) (RETRACT ?S))

;; ESCAPE works with the other rules above as follows. If all the next phases have
;; been retracted, then there is no longer a NEXT PHASE. This rule asserts the
;; warning and shifts control to ERROR. Note: No errors of this nature were
;; reported during the flight tests.

(DEFINE-RULE ESCAPE

(:print-name "ESCAPE"
:doc-string '"'
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:dependencyNIL
:direction :FORWARD
:certainty 1.0
:explanation-string....
:priority 42
:sponsorTOP-SPONSOR)
(SHIFT READY) (UNKNOWN (PHASE NEXT ?))

THEN
(PROHIBITED PHASE WARNING) (SHIFT ERROR))

;; GET-NEXT takescareof assertingthe one-and-onlyPHASE NEXT (the higher
,, priority rule haveascertainedthat If it getshere, there isonly one PHASE
,, NEXT) asthe new NOW-IS IN-PHASE. It alsosetsSHIFT SET.

(DEFINE-RULE GET-NEXT
(:print-name "Get Next Phase"
:doc-string....
:dependencyNIL
:direction :FORWARD
:certainty 1.0
:explanation-string....
:priority 20
:sponsorTOP-SPONSOR)

(SHIFF READY) (PHASE NEXT ?PH)- > ?R
THEN

NOW-IS IN-PHASE ?PH) (SHIFT SET)
RETRACT ?R) )

;; P-CONVERT usesthe EQUIV lookup table to assertthe numerical value of the
;; flight phasein the INSTANCE IS ANALOG. SHIFT is then set to OUTPUT.

(DEFINE-RULE P-CONVERT
(:print-name "P-CONVERT'
:doc-string'"'
:dependencyNIL
:direction :FORWARD
:certainty 1.0
:expla.nation-string....
:priority 20
:sponsorTOP-SPONSOR)

(SHIFT SET) (NOW-IS IN-PHASE ?PH) (EQUIV ?PH ?NUM)
THEN

SHIFF OUTPUT)
INSTANCE IS ISANALOG WITH PHASE-OUT ?NUM))

;;
;; r-symbls.lsp -- dolm: 1-19-90
;;
;; Containsall of the PFD symbolselectionlogic. There is no SHIFT control
;; checksin theserules. All the rule's dependencyare set. This set of rules fire
after
;; the phasedetection rules. Note that the error logic alsotransitions here.

;; NOT-TAXI just setsthe assertionNOW-IS NOT-IN-PHASE TAXI if the a/c is
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;; anyother phase. This is a poor substitution for the lack of a "not" logical in the
;; GW package.

(DEFINE-RULE NOT-TAXI
(:print-name "Not in Taxi phase"
:doe-string'"'
:dependencyT
:direction :FORWARD
:certainty 1.0
:explanation-string....
:priority 10
:sponsorTOP-SPONSOR)

(OR
NOW-IS IN-PHASE TAKEOFF)

NOW-IS IN-PHASE TERM-CB)
NOW-IS IN-PHASE TERM-DS)
NOW-IS IN-PHASE ENR-CB)
NOW-IS IN-PHASE ENR-DS)
NOW-IS IN-PHASE CRUISE)
NOW-IS IN-PHASE LAND) )

THEN

(NOW-IS NOT-IN-PHASE TAXI) )

;; HORIZONTAL DEVIATION {A} - if nav. path = valid
;; hor switch = on

;; not in phase taxi

;; FLARE GUIDE symbol = off
;; XTK-DEV2 symbol = off
;; LOC-DEV symbol = off
;; radar-alt > 260'
;; then

;; HOR-DEV symbol = on

(DEFINE-RULE TTFIM-HOR-DEV{A}
(:print-name "Display Hor Dev"
:doe-string '"'
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 0

:sponsor TOP-SPONSOR)
'NAVPATH2 VALID-IS ON) (HOR SWITCHED ON)
_NOW-IS NOT-IN-PHASE TAXI)(FLARE-GUIDE SYMBOL OFF)
_XTK-DEV2 SYMBOL OFF) (LOC-DEV SYMBOL OFF)
'RADAR-ALT IS ?H) (> ?H 130)

THEN

(HOR-DEV SYMBOL ON))

;; HORIZONTAL DEVIATION {B} - if not in phase taxi
;; nav. path = valid
;; hor switch = on

;; FLARE-GUIDE symbol = off
;; XTK-DEV2 symbol = off
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LOC-DEV symbol = off
then

HOR-DEV symbol = on

(DEFINE-RULE TTFIM-HOR-DEV{B}
(:print-name "Display Hor Dev"
:doc-string ....
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 0
:sponsor TOP-SPONSOR)

(NOW-IS IN-PHASE TAKEOFF) (NAVPATH2 VALID-IS ON)

(HOR SWITCHED ON) (FLARE-GUIDE SYMBOL OFF)
(XTK-DEV2 SYMBOL OFF) (LOC-DEV SYMBOL OFF)

THEN

(HOR-DEV SYMBOL ON))

;; CROSSTRACK DEVIATION {2} - if
;;
;;
;;
;;
;;
;;

phase = TAXI or TAKEOFF
tka mode = 2 or 4
xtk switch = on

FLARE GUIDE symbol = off
horizontal path mode < > 3

then

XTK-DEV2 symbol = on

(DEFINE-RULE T-I'FIM-XTK-DEV2 { SEL-TX-TO }
(:print-name "XTK-DEV2"
:doc-string "(TKsei - TKa/c) mid-priority"
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 0

:sponsor TOP-SPONSOR)
(OR (NOW-IS IN-PHASE TAXI) (NOW-IS IN-PHASE TAKEOFF))
(OR (TKA MODE-IS 2) (TKA MODE-IS 4)) (XTK SWITCHED ON)
(FLARE-GUIDE SYMBOL OFF) (H-PATH MODE-IS ?H)
(NOT-EQUAL 3 ?H)

THEN

(XTK-DEV2 SYMBOL ON))

;; CROSSTRACK DEVIATION {2} - if
;;
;;
;;
;;
;;
;;

tka mode = 2 or 4
xtk switch = on

FLARE-GUIDE symbol = off
horizontal path mode < > 3
radar-alt > 260'

then

XTK-DEV2 symbol = on

(DEFINE-RULE TITIM-XTK-DEV2{ SEL-ANY}

(:print-name "XTK-DEV2 (TKser'
:doc-string "(TKsel - TKa/c) mid priority"

7O



:dependencyT
:direction :FORWARD
:certainty 1.0
:explanation-string""
:priority 0
:sponsorTOP-SPONSOR)
OR (TKA MODE-IS 2) (TKA MODE-IS 4))
XTK SWITCHED ON) (FLARE-GUIDE SYMBOL OFF)
H-PATH MODE-IS ?M) (NOT-EQUAL 3 ?M) (RADAR-ALT IS ?HT)
> ?HT 130)

THEN

(XTK-DEV2 SYMBOL ON))

;; CROSSTRACK DEVIATION {4} - if phase = land
;; xtk switch = on
;; localizer = valid

;; FLARE-GUIDE symbol = off
;; radar-alt > 260'
;; then

;; XTK-DEV4 symbol = on

(DEFINE-RULE TTFIM-XTK-DEV4 { LAND}
(:print-name "XTK-DEV4"

:doc-string "(TKa/c - rwy-hdg) max-priority"
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 0
:sponsor TOP-SPONSOR)

NOW-IS IN-PHASE LAND) (XTK SWITCHED ON)(LOC VALID-IS ON)
FLARE-GUIDE SYMBOL OFF) (XTK-DEV2 SYMBOL OFF)

(RADAR-ALT IS ?O) (> ?O 130)
THEN

(XTK-DEV4 SYMBOL ON))

;; CROSSTRACK DEVIATION { } - if phase = takeoff
;; xtk switch = on

;; navigation path = valid
;; FLARE-GUIDE symbol = off
;; XTK-DEV2 symbol = off
;; XTK-DEV4 symbol = off
;; then

;; XTK-DEV symbol = on

(DEFINE-RULE TI'FIM-XTK-DEV{NAV2}
(:print-name "XTK-DEV"

:doc-string "(TKnav - TKa/c) min-priority"
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string '"'
:priority 0
:sponsor TOP-SPONSOR)
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NOW-IS IN-PHASE TAKEOFF) (XTK SWITCHED ON)
NAVPATH2 VALID-IS ON) (FLARE-GUIDE SYMBOL OFF)
XTK-DEV2 SYMBOL OFF) (XTK-DEV4 SYMBOL OFF)

THEN
(XTK-DEV SYMBOL ON))

;; CROSSTRACK DEVIATION { } - if phase = taxi
;; xtk switch = on

;; navigation path = valid
;; FLARE-GUIDE symbol -- off
;; XTK-DEV2 symbol = off
;; XTK-DEV4 symbol = off
;; radar-altitude > 260'
;; then

;; XTK-DEV symbol = on

(DEFINE-RULE "I-TFIM-XTK-DEV{NAV}
(:print-name "XTK-DEV"
:doc-string "(TKnav - TKa/c) min-priority"
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 0

:_,PTKOnsorTOP-SPONSOR)
SWITCHED ON) (NAVPATH2 VALID-IS ON)

NOW-IS NOT-IN-PHASE TAXI) (FLARE-GUIDE SYMBOL OFF)
XTK-DEV2 SYMBOL OFF) (XTK-DEV4 SYMBOL OFF)
RADAR-ALT IS ?H) (> ?H 130)

THEN

(XTK-DEV SYMBOL ON))

;; VERTICAL PATH - if vrt switch = on

;; navigation path = valid
;; G/S symbol = off
;; REF-ALT = off
;; then

;; VERT-PATH symbol = on

(DEFINE-RULE TIT'I M-VERT-PATH {CWS }
(:print-name "Vertical Path - CWS Mode"
:doc-string '"'
:dependency T
:direction :FORWARD

:certainty 1.0 :explanation-string ....
:priority 0
:_lgROnsor TOP-SPONSOR)

T SWITCHED ON) (NAV-PATH VALID-IS ON)
G/S-DEV SYMBOL OFF)
REF-ALT SYMBOL OFF)

THEN

(VERT-PATH SYMBOL ON))

;; REFERENCE ALTITUDE - if alt mode = 2, 3, or 4
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land mode = 3 or 4
phase< > taxi
G/S DEV symbol = off

then
REF-ALT symbol = on

(DEFINE-RULE TI'FIM-REF-ALT{LAND}
(:print-name "Ref-Altitude in LAND Mode"

:doc-string ....
:dependency T
:direction :FORWARD

:certainty 1.0

:expla.nation-string ....
:priority 0
:sponsor TOP-SPONSOR)
OR (ALT MODE-IS 2) (ALT MODE-IS 3) (ALT MODE-IS 4))
OR (LAND MODE-IS 3) (LAND MODE-IS 4))
RALT SWITCHED ON) (AUTO MODE-IS 4)

(NOW-IS NOT-IN-PHASE TAXI) (G/S-DEV SYMBOL OFF)
THEN

(REF-ALT SYMBOL ON))

;; REFERENCE ALTITUDE - if
;; ralt switch = on
;; auto mode = 4
;; tka mode = 4

;; fpa mode = 4
;; phase < > taxi
;; G/S-DEV symbol = off
;; then

;; REF-ALT symbol = on

ait mode = 2, 3, or 4

(DEFINE-RULE TI'FIM-REF-ALT{FPA}
(:print-name "Ref-Altitude in FPA Mode"

:doc-string ....
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 0
:sponsor TOP-SPONSOR)

(OR (ALT MODE-IS 2) (ALT MODE-IS 3) (ALT MODE-IS 4))

RALT SWITCHED ON) (AUTO MODE-IS 4) (TKA MODE-IS 4)
FPA MODE-IS 4) (NOW-IS NOT-IN-PHASE TAXI)
G/S-DEV SYMBOL OFF)

THEN

(REF-ALT SYMBOL ON))

;; REFERENCE ALTITUDE - if alt mode = 2, 3, or 4
;; a-cws mode = 4 or v-cws mode = 4
;; ralt switch = on

;; phase < > taxi
;; G/S-DEV symbol = off
;; then

73



REF-ALT symbol = on

(DEFINE-RULE TI'FIM-REF-ALT{CWS}
(:print-name "Ref-Altitude in CWS Mode"
:doe-string....
:dependencyT
:direction :FORWARD
:certainty 1.0
:explanation-string....
:priority 0
:sponsorTOP-SPONSOR)
OR (ALT MODE-IS 2) (ALT MODE-IS 3) (ALT MODE-IS 4))
OR (A-CWS MODE-IS 4) (V-CWS MODE-IS 4))
RALT SWITCHED ON) (NOW-IS NOT-IN-PHASE TAXI)
G/S-DEV SYMBOL OFF)

THEN
(REF-ALT SYMBOL ON))

;; REFERENCE ALTITUDE - if tka mode = 4 or h-path mode = 4
;; ralt switch = on
;; auto mode = 4
;; alt mode = 4

;; phase < > taxi
;; G/S-DEV symbol = off
;; then

;; REF-ALT symbol = on

(DEFINE-RULE q'TFIM-REF-ALT{ALT}
(:print-name "Ref-Altitude in AltEng Mode"
:doc-string '"'

:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 0
:sponsor TOP-SPONSOR)

(OR (TKA MODE-IS 4) (H-PATH MODE-IS 4))
(RALT SWITCHED ON) (AUTO MODE-IS 4) (ALT MODE-IS 4)
(NOW-IS NOT-IN-PHASE TAXI) (G/S-DEV SYMBOL OFF)

THEN

(REF-ALT SYMBOL ON))

;; GLIDESLOPE DEVIATION - if a-cws mode = 4 or v-cws mode = 4

;; g/s switch = on
;; glideslope = valid
;; phase = land or terminal descent
;; then

;; G/S-DEV symbol = on

(DEFINE-RULE TI'FIM-G/SLOPE{CWS}
(:print-name "GlideSlope - CWS Mode"
:doc-string '"'
:dependency T
:direction :FORWARD
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:certainty 1.0
:explanation-string'"'
:priority 0
:sponsorTOP-SPONSOR)
OR (A-CWS MODE-IS 4) (V-CWS MODE-IS 4))
G/S SWITCHED ON) (G/S VALID-IS ON)
OR (NOW-IS IN-PHASE LAND) (NOW-IS IN-PHASE TERM-DS))

THEN
(G/S-DEV SYMBOL ON))

;; GLIDESLOPE DEVIATION
;;
;;
;;
;;
;;
;;

- if phase= land or terminal-descent
g/s switch = on
glideslope = valid
auto mode = 4
fpa mode = 4

then
G/S-DEV symbol = on

(DEFINE-RULE TI'FIM-G/SLOPE{FPA}
(:print-name "GlideSlope - FPA Mode"
:doc-string ""
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 0
:sponsor TOP-SPONSOR)

OR (NOW-IS IN-PHASE LAND) (NOW-IS IN-PHASE TERM-DS))
G/S SWITCHED ON) (G/S VALID-IS ON)

AUTO MODE-IS 4) (FPA MODE-IS 4)
THEN

(G/S-DEV SYMBOL ON))

;; GLIDESLOPE DEVIATION
;;
;;
;;
;;
;;
;;

- if phase = land or terminal-descent
g/s switch = on
glideslope = valid
auto mode = 4
land mode -- 3 or 4

then

G/S-DEV symbol = on

(DEFINE-RULE TFFIM-G/SLOPE{LAND}
(:print-name "GlideSIope - LAND Mode"
:doc-string ""
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string ""
:priority 0
:sponsor TOP-SPONSOR)

OR (NOW-IS IN-PHASE LAND)(NOW-IS IN-PHASE TERM-DS))
OR (LAND MODE-IS 4) (LAND MODE-IS 3))
AUTO MODE-IS 4) (G/S SWITCHED ON) (G/S VALID-IS ON)

THEN
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(G/S-DEV SYMBOL ON))

;; RADAR ALTITUDE - if phase = tds,tclb, eclb,eds,or land
;; radar-alt < 1300'
;; then

;; RAD-ALT symbol = on

(DEFINE-RULE "ITFIM-RADAR-ALT

(:print-name "Display RAD ALT Symbol"
:doc-string '"'
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 0
:sponsor TOP-SPONSOR)

(OR (NOW-IS IN-PHASE TERM-CB) (NOW-IS IN-PHASE TERM-DS)

NOW-IS IN-PHASE ENR-CB) (NOW-IS IN-PHASE ENR-DS)
NOW-IS IN-PHASE LAND) )

(RADAR-ALT IS ?O) ( < ?Q 650)
THEN

(RAD-ALT SYMBOL ON))

;; RUNWAY IMAGE - if phase = term-descent or land
;; rwy switch = on

;; in-coverage discrete = on
;; rwy in nav computer = true
;; a/c is w/in coverage cone
;; alt < = 5000'
;; then

;; RWY-IMAGE symbol = on

(DEFINE-RULE TTFIM-RWAY-IMAGE

(:print-name "Runway Image"
:doc-string '"'
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 0
:sponsor TOP-SPONSOR)

(OR (NOW-IS IN-PHASE TERM-DS) (NOW-IS IN-PHASE LAND))
RWY SWITCHED ON) (IN-COVERAGE DISCRETE-IS ON)

RWY-IN-NAV DISCRETE-IS ON) (A/C-TRACK IS ?T)
RWY-HEADING IS ?H) (< (- ?T ?H) 41)
< (- ?H ?T) 41) (ALTITUDE IS ?A) (< = ?A 2500)

THEN

(RWY-IMAGE SYMBOL ON))

;; WAYPOINT STAR - if star switch = on

;; nav-path = valid
;; last-waypoint = false
;; waypoint is w/in range
;; then
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WP-STAR symbol = on

(DEFINE-RULE TI'FIM-WP-STAR

(:print-name "WaypointStar"
:doc-string ....
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string '"'
:priority 0
:sponsor TOP-SPONSOR)
STAR SWITCHED ON) (NAV-PATH VALID-IS ON)
LAST-WP DISCRETE-IS OFF)

WP-DISPLAYABLE DISCRETE-IS ON)
;; (WP-ALERT DISCRETE-IS OFF)

THEN

(WP-STAR SYMBOL ON))

;; FLARE GUIDE - if phase = land
;; v-cws mode = 4

;; radar-alt < decision height
;; then

;; FLARE-GUIDE symbol = on

(DEFINE-RULE TTFIM-FLARE{ < DEC}
(:print-name "Display FlareGuide below DecisionHeight"
:doc-string ....
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 0
:sponsor TOP-SPONSOR)
NOW-IS IN-PHASE LAND) (V-CWS MODE-IS 4)
RADAR-ALT IS ?H) (DEC-HT IS ?D) (< = ?H ?D)

THEN

(FLARE-GUIDE SYMBOL ON))

;; FLARE GUIDE - if phase = land
;; v-cws mode = 4
;; radar-alt < = 200'

;; then

;; FLARE-GUIDE symbol = on

(DEFINE-RULE TI'FIM-FLARE{ < 200}
(:print-name "Display FlareGuide below 200' "
:doc-string ....
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string '"'
:prmnty 0
:sponsor TOP-SPONSOR)
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NOW-IS IN-PHASE LAND) (V-CWS MODE-IS 4)
RADAR-ALT IS ?Q) (< = ?Q 100)

THEN
(FLARE-GUIDE SYMBOL ON))

;; LOCALIZER DEVIATION
;;
;;
;;
;;
;;
;;

- if phase = land or term-ds
loc switch = on
localizer = valid
FLARE-GUIDE symbol = off
RADAR-ALT > 260'

then
LOC-DEV symbol = on

(DEFINE-RULE TrFIM-LOC-DEV
(:print-name "Display LOC DEV"
:doc-string....
:dependencyT
:direction :FORWARD
:certainty 1.0
:explanation-string....
:priority 0
:sponsorTOP-SPONSOR)
(OR (NOW-IS IN-PHASE LAND)(NOW-IS IN-PHASE TERM-DS))
(LOC SWITCHED ON) (LOC VALID-IS ON)
(FLARE-GUIDE SYMBOL OFF) (XTK-DEV2 SYMBOL OFF)
(RADAR-ALT IS ?Q) ( > ?Q 130)
THEN
(LOC-DEV SYMBOL ON))

;; COMMANDED AIR SPEED - if casmode = 2 or 4
,, then

;; CAS-REF-DIAL symbol = on

(DEFINE-RULE TI'FIM-CAS{DIAL}
(:print-name "Display CAS"
:doc-string ....
:dependency T
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 0

:sponsor TOP-SPONSOR)
(OR (CAS MODE-IS 2) (CAS MODE-IS 4))

THEN

(CAS-REF-DIAL SYMBOL ON))

;; COMMANDED AIR SPEED - if t-path mode = 4
,,,, cas switch = on

;; last waypoint = false
;; CAS-REF-SYMBOL = off
,,,, then

;; CAS-REF-BUF symbol = on

(DEFINE-RULE "ITFIM-CAS{WP-BUFF}
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(:print-name "CAS-SELECT{WP-BUFF}"
:doc-string'"'
:dependencyT
:direction :FORWARD
:certainty 1.0
:explanation-string....
:priority 0
:sponsorTOP-SPONSOR)
T-PATH MODE-IS 4) (CAS SWITCHED ON)
LAST-WP DISCRETE-IS OFF) (CAS-REF-DIAL SYMBOL OFF)

THEN
(CAS-REF-BUF SYMBOL ON))

;;
;;
;;
;;
;;
;;
;;
;;

r-output.lsp -- dolm: 1-19-90

Contains the rules for initiating uploads, displaying info on development screen,
and starting the recycle. This is the last set of rules to fire. After setting SHIFT to
OUTPUT, the system falls through the symbol rules (they have higher priority)
then control comes here. To start the recycle, SHIFT TOP is set.

;; UPLOAD -- If SHIFT EXIT has been set and a slot has been change (i.e.,
;; STATUS SHOW 1) or an error has occurred, let DATAC code know an upload
;; needs to take place by setting slot ULOAD to YES.

(DEFINE-RULE UPLOAD
(:print-name "UPLOAD"
:doc-string ....
:dependency NIL
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority 0

:sponsor TOP-SPONSOR)
(SHIFT EXIT) (OR (STATUS SHOW 1) (ERR-FLG IN-PHASE 1) )

THEN

(INSTANCE INIT IS CONTROL WITH ULOAD YES))

;; ERROR-HANDLER -- The only time the error handler will be used is when
;; multiple NEXT PHASEs occur when automatically detecting flight phases. This
;; itself is unlikely since the rule were designed so that this will not occur.

(DEFINE-RULE ERROR-HANDLER

(:print-name "ERROR-CODE"
:doc-string ....
:dependency NIL
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority -200
:sponsor TOP-SPONSOR)

(SHIFT ERROR)
THEN
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(SHIFT EXIT) (INSTANCE IN-PHASE IS CURRENT WITH ERR-FLG 1)

;; EXIT-ESCAPE -- The exit route used when no changes have to be reported to
;; the output screen. Sets SHIFT EXIT.

(DEFINE-RULE EXIT-ESCAPE
(:print-name "NORMAL EXIT ROUTE"
:doc-string ....
:dependency NIL
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority -800
:sponsor TOP-SPONSOR)

(SHIFT OUTPUT)
THEN

(SHIFT EXIT) )

;; RECYCLE-RULE -- Resets the DLOAD, ULOAD, ERR-FLG, and STATUS

;; assertions for the next cycle. Also sends control back to the top by SHIFT TOP.

(DEFINE-RULE RECYCLE-RULE

(:print-name "RECYCLE-RULE"
:doc-string ....
:dependency NIL
:direction :FORWARD

:certainty 1.0

:explanation-string ....
:priority -900
:sponsor TOP-SPONSOR)

(SHIFT EXIT)
THEN

(INSTANCE INIT IS CONTROL WITH DLOAD NO WITH ULOAD NO)
INSTANCE IN-PHASE IS CURRENT WITH ERR-FLG 0)

INSTANCE SHOW IS CONTROL WITH STATUS 0)
SHIFT TOP) )

;; f-utiis.lsp -- dolm: 1-22-90

;; All daemon functions. These functions handle overhead operations at what
;; would be considered the system level.
..

;; ZERO-SET is used as a daemon function to return values to 0 when they have

;; been retracted. It would have been nice if the system had a feature like this --
;; instead of retracting the assertion, it returned the assertion to its default value.

(defun zero-set (inst slot old new)

(cond ( (eq *no-value* (multiple-value-bind (x y) (slot-value inst slot) y ) )
(setf (slot-value inst slot) 0 ) ))

)
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;; OFF-SET isusedasa daemonfunction to return valuesto OFF when they have
;; beenretracted. It would havebeennice if the systemhad a feature like this --
;; insteadof retracting the assertion,it returned the assertionto its default value.

(defun off-set (inst slot old new)

(cond ( (eq *no-value* (multiple-value-bind (x y) (slot-value inst slot) y ) )
(setf (slot-value inst slot) 'OFF ) ) )

)

;; TF-SET is a slot fixing daemon. If a true/false slot = 1 then it sets it to 'T. And,
;; if it = 0, it sets it to 'F.

(defun TF-SET (inst slot old new)

(cond ( (equal 1 (car new)) (setf (slot-value inst slot) 'T ) )
( (equal 0 (car new)) (setf (slot-value inst slot) 'F) ) )

)

;; OFF-ON-SET is a slot fixing daemon. If an OFF/ON slot = 1 then it
;; sets it to 'ON. And, if it = 0, it sets it to 'OFF.

(defun OFF-ON-SET (inst slot old new)
(cond ( (equal 1 (car new)) (serf (slot-value inst slot) 'ON) )

( (equal 0 (car new)) (serf (slot-value inst slot) 'OFF) ) )
)

;; f-iobas.lsp -- dolm: 1-22-90

;;
;; TI'FIM functions for io operations (i.e., port calls, low-memory access, etc.
;;

;; ..... Download ....

;;
;; For complete load of TYFIM module of data from ioports. Called as daemon.

(defun FULLOAD (inst slot old new)
(cond ( (equal 'YES (car new)) (do-load))))

(defun DO-LOAD ()
mode-fix M1LIST'MODE-IS 4 #x133)
mode-fix M2LIST 'MODE-IS 4 #x134)
mode-fix M3LIST 'MODE-IS 3 #x135)
on-off-fix S1LIST'SWITCHED 7 #x131) ; switches

on-off-fix S2LIST,'SWITCHED 3 #x 132)
on-off-fix VLIST,VALID-IS 4 #x136) ; valids
on-off-fix BLIST D!SCRETE-IS 5 #x137) ; booleans
slot-fix PHASE-IN IS (read-byte #x130)) ;; new for Phase2x
slot-quan 'RADAR-ALT 'IS #xl3C)

slot-quan 'DEC-HEIGHT 'IS #xl3E)
slot-quan 'RWY-HEADING 'IS #x148)
slot-quan 'A/C-TRACK 'IS #x146)

setf SLIST '(TREVERSE SQUAT GEAR))
on-off-fix SLIST DISCRETE-IS 3 #xl4F)
slot-quan 'GAMMA'IS #x140)
slot-quan 'EPR 'IS #x142)
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slot-quan 'FLAPS'IS #xl4A)
slot-quan 'ALTITUDE 'IS #x138) )

;; Final load function for the MODE instance. Acceptsa slot-namelist asargument
;; -- accepts'number' & 'addr' asargumentsfor called function 'make-nlist - where
;; 'number is # of itemsin N-LIST

(defun MODE-FIX (list inst number addr)
(mapcar 'SLOT-FIX list

make-inst-list inst number)
make-nlist number addr) ) )

;; ON-OFF-FIX is the ultimate level function for singledigit (1/0 - t/f) loads.
;; Accepts arguments list = slot name list, number = # items in list, addr = ioport
;; addr.

(defun ON-OFF-FIX (list inst number addr)
(mapcar 'SLOT-FIX list

make-inst-list inst number)
make-on/off-list number addr) ) )

;; sets a given slot value in the current GW frame/instance/slot environment

(defun SLOT-FIX (slot inst value)
(serf (slot-value inst slot) value) )

;; load of analog slot 'inst directly from port addr.

(defun SLOT-QUAN (slot inst addr)
(setf (slot-value inst slot) (read-word addr)) )

;; this is called by OTHER-FIX & MODE-FIX to create a list of'number' items all
;; of'inst'

(defun MAKE-INST-LIST (inst number)
(DO (( COUNT number) (I-LIST NIL))

((ZEROP COUNT) I-LIST)
setf I-LIST (cons inst I-LIST))
setf COUNT (- COUNT 1))))

;; MAKE-NLIST (called by MODE-FIX) -gets word from ioport (addr) & converts
,, input (byte) into a list of numbers - each from 1-4 in value using 2 bits per
;; number.

(defun MAKE-NLIST (number addr) ;; number = # items, addr = ioport
setf N-LIST 0 ) ;; declare N-LIST - this function
setf D-WORD (read-byte addr))
DO ( (XNUM number (- XNUM 1) ) );; NUMBER initialized and bound

( (= 0 XNUM) N-LIST) ;; terminate when NUMBER = 0
setf N-LIST (cons (nib-to-num D-WORD) N-LIST) );; add to list
serf D-WORD (truncate D-WORD 4) ) ) ;; chop 2 bits

N-LIST ) ;; return N-List

;; MAKE-ON/OFF-LIST accepts arguments 'number' & 'addr' - passing addr to
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;; read-byte, and 'number' to WORD-TO-LIST function. It createsa list of l's &
;; O'sin the list TFLIST - boundhere but returned asoutput to caller.

(defun MAKE-ON/OFF-LIST (number addr)
setfWORD (read-byteaddr) )
setfTFLIST (WORD-TO-LIST NUMBER WORD) )

TFLIST )

;; WORD-TO-LIST. Subroutine converting an input number (byte) into a list of n
;; l's & O's, where n may be up to 8 (16) depending on the input number. The
;; 'number' argument is the # of items in the list. The 'input' argument is the data
;; number.

(defun WORD-TO-LIST (NUMBER INPUT)
(DO ( (I-LIST 0) (VALUE INPUT) (INDEX NUMBER (- INDEX I) ) )

( (ZEROP INDEX) I-LIST)
(SETQ I-LIST (CONS (COND ( (ODDP VALUE) I) ( (EVENP VALUE) 0))

I-LIST) )
(SETQ VALUE (TRUNCATE VALUE 2) ) )

)

;; NIB-TO-NUM accepts an input number from the caller and converts lowest two
;; bits into a value 1-4 which it returns

(defun NIB-TO-NUM (input) ;; input is a 2bit number 0-3
(setq I-NUM 1) ;; for each bit in input, incr I-NUM
(cond ( (oddp INPUT) (setq I-NUM (+ I-NUM 1)) ))
(setq INPUT (truncate INPUT 2) )
(cond ( (oddp INPUT) (setq I-NUM (+ I-NUM 2)) ) )
I-NUM ) ;; return a number 1-4

(defun READ-BYTE (addr)

(sys:%ioport addr nil nil))

(defun READ-WORD (addr)
(sys:%ioport addr nil t))

;; Lists naming to read into slots from ioports for T-FFIM
;; downloading.

(serf M1LIST '(TKA FPA ALT CAS))
setf M2LIST '(LAND AUTO A-CWS V-CWS))
serf M3LIST '(T-PATH V-PATH H-PATH))
serf VLIST '(NAVPATH2 NAV-PATH LOC G/S))

(serf BLIST '(IN-COVERAGE RWY-IN-NAV WP-ALERT WP-DISPLAYABLE
LAST-WP ))

(serf SILIST '(CAS XTK LOC HOR G/S VRT RALT))
(serf S2LIST '(AUTO-PHASE STAR RWY))

..... ,_,r,,_.uau .....

;; For uploading data that has changed. Called as a daemon.
;;
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;; New TITIM upload daemon.

(defun SEND-DSP-CMD (inst slot old new)

lcond (equal /car new / (write-word #xll0 (make-dsp-cmd))
cond I 'YES'YES tcar new)(equal l

(write-byte #x112 (slot-value 'IS 'PHASE-OUT)) ))

(cond ( (equal 'YES (car new) )
(write-byte #x113 (slot-value 'IN-PHASE 'ERR-FLG)) )) )

))

;; For "Iq'FIM upload .. originally in file \larc\io99bas.lsp

(defun MAKE-DSP-CMD 0
(serf DSPSLOT '(REF-ALT WP-STAR HOR-DEV G/S-DEV LOC-DEV

CAS-REF-DIAL CAS-REF-BUF RWY-IMAGE RAD-ALT VERT-PATH

FLARE-GUIDE XTK-DEV XTK-DEV2 XTK-DEV4) )
setfBINLST'(1 2 4 8 16 32 64 256 512 1024 2048 4096 8192 16384))
serf OUTNUM 0)
mapcar 'BIT-SET DSPSLOT BINLST)
OUTNUM

;; Primitives for upload of display command word (bytes) where OUTNUM is
,, unbound here and references a global var from caller.

(defun BIT-SET (slot bnum )
(cond ((equal 'ON (slot-value 'SYMBOL slot) )

(serf OUTNUM (+ bnum OUTNUM) ))
( t OUTNUM)) )

;; With these defns, must use hex addr & value

(defun WRITE-BYTE (addr value)
(sys:%ioport addr value nil))

(defun WRITE-WORD (addr value)
(sys:%ioport addr value t))
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